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Articles 

 
The Role of Telemetric Systems in Improving the Efficiency of Managing 
Technical Objects in the Digital Economy 
 
Oleg A. Akishin a, Olga M. Perminova a , * 
 
a MIREA – Russian Technological University, Moscow, Russian Federation 

 
Abstract 
This article examines the role of telemetry systems in improving the efficiency of technical 

asset management in the digital economy. Key factors in telemetry development are highlighted 
and the results of monitoring system implementation are summarized. It is shown that the 
integration of telemetry into technical systems management strategies is becoming a core 
component of digital transformation, with maximum efficiency achieved through end-to-end 
integration: from sensors and communication channels to storage, analytics, and organizational 
response procedures. Telemetry is transforming into a core digital management tool, ensuring a 
seamless process from assessing actual conditions to taking timely actions, surpassing the 
capabilities of one-time measurements. The use of time series storage and analytical modules 
transforms telemetry data flows into management decisions, increasing operational sustainability 
and cost-effectiveness. 

Keywords: telemetry, monitoring, data analysis, digital transformation, predictive 
analytics, efficiency, reliability. 

 
1. Введение 
Цифровая трансформация экономики кардинально меняет подходы к управлению 

сложными техническими объектами, предъявляя новые требования к скорости, точности и 
обоснованности принимаемых решений. В условиях роста сложности систем и 
динамичности их рабочих режимов традиционные методы, основанные на разовых 
измерениях и регламентном обслуживании, становятся недостаточно эффективными. 
Это обуславливает необходимость перехода к непрерывному мониторингу и управлению на 
основе данных, где центральное место занимают телеметрические системы. Актуальность 
телеметрии подчеркивается ее растущим межотраслевым применением – 
от промышленности и энергетики до транспорта и умной городской инфраструктуры. 
Современная телеметрия эволюционировала от простого инструмента сбора данных до 
опорного элемента архитектуры управления, формирующего замкнутый цикл «измерение – 
передача – анализ – действие». Несмотря на признаваемую пользу, систематизация 
факторов, усиливающих ее значимость, и комплексная оценка практических результатов 
внедрения остаются задачами, требующими решения. Целью исследования является анализ 
роли телеметрических систем в повышении эффективности управления техническими 

* Corresponding author 
E-mail addresses: perminova@mirea.ru (O.M. Perminova) 
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объектами, выявление ключевых факторов их развития, определение роли технологии как 
стратегического актива, обеспечивающего устойчивость, надежность и экономическую 
целесообразность эксплуатации в условиях цифровой экономики. 

 
2. Материалы и методы 
В работе использованы: теоретический и сравнительный анализы, синтез и 

систематизация, нормативно-регламентный и структурно-функциональный анализ, анализ 
количественных и качественных результатов. 

 
3. Обсуждение 
Современная технологическая среда переживает период интенсивной цифровизации 

(Manyika et al., 2015). Сложность объектов и скорость изменения их состояний возрастают, 
что снижает эффективность разовых измерений и делает критически важным непрерывный 
сбор данных. В результате управление перестраивается с регламентно-интуитивной логики 
на модель на основе фактических параметров. Телеметрия из вспомогательного 
инструмента превращается в опорный элемент архитектуры управления, позволяя 
фиксировать динамику процессов и принимать своевременные решения на основе 
объективной информации, именно этот контекст определяет актуальность систем 
дистанционного измерения и передачи данных (World Economic Forum, 2024; World 
Economic Forum, 2025).  

 
4. Результаты 
В настоящее время возникла устойчивая потребность не только видеть текущее 

состояние, но и отслеживать закономерности временных рядов, предсказывать отклонения 
и предотвращать сбои. В таких условиях телеметрия обеспечивает связку измерение – 
передача – хранение – анализ – действие, и становится основой практического применения 
методов аналитики и автоматизации. Для обоснования актуальности использования 
телеметрии как системного инструмента повышения устойчивости и эффективности, 
понимания ее востребованности в технических сферах проведен сравнительный анализ 
факторов, представленный в Таблице 1, составленной на основе: IEC 61508:2010 (ГОСТ 
Р МЭК 61508-1-2012); технических регламентов эксплуатации оборудования и экспертных 
интервью (ISO 13374-4:2015). Как видно из нее, существует необходимость пересмотра 
подходов к управлению в пользу непрерывного наблюдения и аналитики. Телеметрия 
выступает связующим звеном между фактическим состоянием системы и управленческими 
действиями, создавая базу для предиктивного и проактивного управления (Chang, 2015), 
(Chang, 2019). Анализ распространения телеметрии в технических сферах показывает 
повторяемую логику эффектов, обобщенную в Таблице 2, составленной на основе: IEC 
61508:2010; технических регламентов эксплуатации оборудования и экспертных интервью. 

 
Таблица 1. Факторы и цифровые инструменты, усиливающие значимость телеметрии 
 

Факторы и 
тенденции 

Технологическое 
содержание 

Инструменты и 
технологии 

Управленческий 
эффект 

Усложнение 
технических 
систем 

Рост числа 
контролируемых 
параметров и узлов 

Датчики, 
контроллеры, шины 
полевого уровня 

Повышение 
точности контроля 

Цифровизация 
процессов 
управления 

Переход к решениям на 
основе данных 

Платформы 
мониторинга, базы 
временных рядов 

Снижение 
субъективности 
решений 

Развитие ИоТ  Массовое внедрение 
датчиков 

Low-power сенсоры, 
edge-аналитика 

Масштабируемост
ь мониторинга 

Требования к 
безопасности и 
надежности 

Неприемлемость 
задержек и потерь 
данных 

Резервирование 
каналов, контроль 
целостности 
 

Снижение риска 
аварий 
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Факторы и 
тенденции 

Технологическое 
содержание 

Инструменты и 
технологии 

Управленческий 
эффект 

Необходимость 
контроля в 
реальном 
времени 

Критичность 
своевременного 
обнаружения 
отклонений 

Потоковая 
телеметрия, MQTT, 
OPC UA, 4G/5G 

Ускорение 
реакции 

Экономическое 
давление на 
издержки 

Дороговизна простоев и 
ремонтов 

Предиктивная 
аналитика, ML для 
отказов 

Сокращение 
затрат 

 
Таблица 2. Элементы телеметрии и результаты их применения 
 

Элемент Функция Риски при слабом 
звене 

Результат при 
корректной работе 

Датчики Преобразование 
физических величин в 
данные 

Шум, смещение, 
ложные тревоги 

Достоверная 
первичная 
информация 

Блоки сбора Фильтрация, агрегация, 
буферизация 

Потери пакетов, 
перегрузка 

Стабильный поток 
данных 

Каналы связи Передача в реальном 
времени 

Задержки, разрывы Минимум слепых 
интервалов 

Хранилища 
временных 
рядов 

Структурирование 
истории 

Потеря 
историчности 

Анализ динамики и 
трендов 

Аналитика Поиск закономерностей 
и аномалий 

Нереализованная 
ценность данных 

Обоснованные 
решения 

Визуализация Понятная подача 
информации 

Замедленная 
реакция оператора 

Быстрые 
управленческие 
действия 

 
Внедрение телеметрии носит межотраслевой характер, однако конкретные реализации 

адаптируются к особенностям доменной области. В промышленности доминируют задачи 
предотвращения аварий и сокращения простоев, в транспорте востребованы потоки 
геопараметров, нагрузок и диагностик, в инженерной подготовке акцент делается на 
объективной оценке действий оператора и разборе траекторий, но при этом, во всех случаях 
телеметрия повышает устойчивость процессов, делает решения измеримыми и 
воспроизводимыми (Gartner, 2024). 

Внедрение телеметрии в стратегию управления техническими системами приобретает 
статус базового компонента цифровой трансформации. Проведенное исследование дало 
возможность наглядно показать преимущества использования телеметрии. Так, на Рисунке 1 
представлено три подхода к управлению техническими системами по трем метрикам: 
скорость реакции, точность корректировок, устойчивость к внешним нагрузкам. 

 
Рис. 1. Сравнительная эффективность инструментов управления 
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Как видно, непрерывный телеметрический мониторинг является наиболее 
эффективным способом. На Рисунке 2 показано индексное изменение показателей 
относительно базового уровня через некоторое время после внедрения по показателям: 
стабильность работы оборудования, уровень эксплуатационных затрат, частота внеплановых 
вмешательств. Проведенный опрос по мотивам внедрения телеметрии, представленный на 
Рисунке 3 показывает, что телеметрия повышает надежность и безопасность и снижает простои 
и затраты. 
 

 
Рис. 2. Динамика ключевых показателей после внедрения телеметрии 
 

 
 
Рис. 3. Структура мотивов внедрения телеметрии 

 
5. Заключение 
Таким образом, внедрение телеметрии в стратегию управления техническими 

системами приобретает статус базового компонента цифровой трансформации, при этом 
максимальная отдача достигается при сквозной интеграции: от датчика и канала связи до 
хранилища, аналитики и оргпроцедур реакции. Телеметрия трансформируется в опорный 
инструмент цифрового управления и обеспечивает непрерывность процесса от оценки 
фактического состояния к своевременным действиям, что превосходит возможности 
разовых измерений. Использование хранилищ временных рядов и аналитических модулей 
превращают информационные потоки телеметрии в управленческие решения, повышая 
устойчивость и экономичность эксплуатации. 
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Роль телеметрических систем в повышении эффективности управления 
техническими объектами в условиях цифровой экономики 
 
Олег Александрович Акишин a, Ольга Михайловна Перминова a , * 
 
а МИРЭА – Российский технологический университет, Москва, Российская Федерация 

 
Аннотация. В статье рассмотрена роль телеметрических систем в повышении 

эффективности управления техническими объектами в условиях цифровой экономики. 
Выделены ключевые факторы развития телеметрии и обобщены результаты применения 
систем мониторинга. Показано, что внедрение телеметрии в стратегию управления 
техническими системами приобретает статус базового компонента цифровой трансформации, 
при этом максимальная отдача достигается при сквозной интеграции: от датчика и канала 
связи до хранилища, аналитики и организационных процедур реакции. Телеметрия 
трансформируется в опорный инструмент цифрового управления и обеспечивает 
непрерывность процесса от оценки фактического состояния к своевременным действиям, что 
превосходит возможности разовых измерений. Использование хранилищ временных рядов и 
аналитических модулей превращают информационные потоки телеметрии в управленческие 
решения, повышая устойчивость и экономичность эксплуатации. 

Ключевые слова: телеметрия, мониторинг, анализ данных, цифровая 
трансформация, предиктивная аналитика, эффективность, надежность. 
 

* Корреспондирующий автор 
Адреса электронной почты: perminova@mirea.ru (О.М. Перминова) 
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Technical Notes on the Applicability of SEM And EPMA (Microprobe Analysis) for 
Reconstructing Biogeographical and Paleoclimatic Factors of Taphonomic 
Alterations of Elasmobranch Teeth 
 
Pavel L. Alexandrov a , b , *, Mikhail K. Filippov c, Theodor K. Orekhov c 
 
a Institute of Higher Nervous Activity and Neurophysiology, RAS, Moscow, Russian Federation 
b Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russian Federation 
c Semenov Institute of Chemical Physics, RAS (ICP RAS), Moscow, Russian Federation 

 
Abstract 
Fossil elasmobranch teeth collected from multiple geographic regions, contrasting 

depositional settings, and different palaeo-oceans/palaeoclimates offer valuable archives of past 
marine conditions, but they pose a general analytical challenge for us: ensuring comparability 
among samples affected by locality-specific diagenesis. Primary biological and environmental 
signatures in enameloid and dentine can be partially overprinted by recrystallisation, mineral 
replacement, and post-burial elemental uptake. To discriminate these signals reliably, an 
integrated microstructural–geochemical workflow is required in which scanning electron 
microscopy is combined with electron-probe microanalysis with energy-dispersive (EDS) and 
wavelength-dispersive (WDS) X-ray spectroscopy. Deposits formed in different basins, palaeo-
continents and palaeo-oceans commonly experienced contrasting diagenetic histories (chemistry, 
burial temperature, sedimentation time and substitution, redox state of the environment). These 
factors can overprint tooth tissues in ways that mimic or obscure primary biological/environmental 
signals. SEM provides the necessary taphonomic and microstructural context prior to geochemical 
interpretation. Backscattered-electron imaging and high-resolution secondary-electron imaging 
allow direct assessment of sample preservation states. SEM also resolves diagnostic enameloid 
ultrastructure, enabling the distinction between preserved biogenic fabrics and diagenetic mosaics 
that may mimic original biogenic features. 

Keywords: biogeography, taphonomy, elasmobranchs, diagenesis, biomineralization, 
enameloid, SEM, EPMA, WDS, EDS, backscattered electron detector (BSE). 

 
1. Introduction 
A fundamental feature that underpins biogeographers’ interest in studying fossil shark 

(elasmobranch) teeth is their ubiquitous occurrence across highly spatially separated regions, 
countries, and different continents, in particular: 

1. In Australia and New Zealand (Daymond, 1999; Rees et al., 2024), as well as on the islands 
of the Malay Archipelago (e.g., Borneo), known in Western literature as Insulindia or the Indo-
Australian Archipelago (Kocsis, 2024); 

2. In Asia, specifically in: 
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2.1. India (Prasad et al., 2004; Prasad et al., 2017). 
2.2. Taiwan (Lin et al., 2022). 
2.3. Thailand (Cappetta et al., 2006). 
2.4. South Korea (Yun, 2021). 
3. In Africa, both in North Africa (Adnet et al., 1990; Boulemia, Adnet, 2023) and in Southern 

Africa (Smale, 2005). 
4. In Antarctica and adjacent islands (such as Seymour Island, also known as Simur, located 

near the Trinity Peninsula, the northern tip of the Antarctic Peninsula (Long, 1992)). 
5. In Europe (Leidner, Thies, 1999), specifically in: 
5.1. Austria (Feichtinger et al., 2025). 
5.2. Belgium (Iserbyt, De Schutter, 2012). 
5.3. The United Kingdom (Paton, 1993). 
5.4. Germany (Höltke et al., 2023). 
5.5. Western Kazakhstan (it is well known that most of the country’s territory belongs to 

Central Asia, but some parts, including West Kazakhstan Region, lie in Europe, making Kazakhstan 
a transcontinental state) (Radwański, Marcinowski, 1996). 

5.6. Poland (Schultz, 1977). 
5.7. The European part of Russia (Mertiniene, 1995). 
5.8. Ukraine (Sokolskyi, Guinot, 2021). 
6. In North America, specifically in: 
6.1. Canada (Beavan, Russell, 1999; Mutter et al, 2007). 
6.2. The United States (Schubert, 2013; Shimada et al., 2015; Swinehart et al., 2020). 
7. In South America/Latin America, specifically in: 
7.1. Argentina (Johns et al, 2014). 
7.2. Peru (Landini et al., 2017). 
7.3. Chile (Suaez et al., 2004). 
The study of fossil elasmobranch teeth requires analytical methods capable of resolving the 

hierarchical microstructure of enameloid and dentine, and quantifying chemical compositions at 
spatial scales comparable to growth tissues and diagenetic alteration fronts. Scanning electron 
microscopy (SEM) combined with electron-probe microanalysis (EPMA) with X‑ray microanalysis by 
wavelength-dispersive (WDS) or energy-dispersive spectroscopy (EDS) provides precisely this pairing 
of microstructural and microchemical evidence. This integrated approach is particularly necessary 
because fossil shark teeth are commonly preserved in markedly different biogeoghraphic and 
taphonomic states, and because enameloid exhibits tissue-specific crystal architectures that can be 
obscured or mimicked or disrupted by diagenesis and carious (chemo)taphonomic conditions. 

 
2. Materials and methods. 
2.1. Why SEM is necessary. 
Elasmobranch tooth enameloid is a highly mineralised, apatite-based tissue whose diagnostic 

characters reside in micro- to nanoscale organisation: crystallite size and habit, preferred 
orientation, bundled architectures, and the nature of the enameloid–dentine junction (EDJ). 
Optical microscopy alone is often insufficient because many of these features are below the 
diffraction limit, and (sic!) diagenetic overprinting frequently modifies optical properties without 
preserving original textures. 

Different SEM regimes are therefore used to: 
1. Characterise enameloid ultrastructure. Secondary-electron imaging can reveal surface 

relief, permitting discrimination between primary crystallite bundles/orientation patterns and 
secondary recrystallised mosaics. 

2. Identify diagenetic microtextures. Backscattered-electron (BSE) imaging provides 
compositional contrast (mean atomic number contrast), enabling recognition of infillings, coatings, 
and replacement phases (e.g., carbonate cement, silica, iron–manganese oxides) that may not be 
apparent in transmitted light. 

3. Map microcracks, porosity, and intergranular boundaries. These are critical because 
they act as pathways for fluid-mediated element exchange and thus govern the spatial pattern of 
chemical alteration. 
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4. SEM allows analysts to select minimally altered regions of enameloid and dentine and 
target specific structural units (enameloid vs dentine). 

SEM provides the microstructural context required to interpret any chemical data as either 
biogenic (primary) or diagenetic (secondary). 

 
2.2. Why EPMA is necessary 
EPMA (electron microprobe) offers quantitative, spatially resolved major- and minor-

element analysis at the micrometre scale, which matches the scale of tooth tissues and many 
alteration halos. This is essential because elasmobranch teeth comprise compositionally distinct 
components (enameloid vs dentine), and diagenesis can create steep chemical gradients over tens 
of micrometres. EPMA is used to: 

1. Quantify apatite stoichiometry and substitutions. Measuring Ca, P, and minor elements 
(e.g., F, Na, Mg, S, Cl, Sr) constrains the degree and type of ionic substitution in bioapatite, which 
in turn reflects both original biomineralisation and diagenetic modification (e.g., fluoridation, 
carbonate substitution proxies, coupled substitutions). 

2. Distinguish tissue-specific signatures. Enameloid and dentine often differ in minor-
element budgets and alteration susceptibility; quantitative traverses can reveal whether chemical 
contrasts are primary or have been homogenised by recrystallisation. 

3. Resolve microchemical heterogeneity. Preservation is rarely uniform; EPMA maps and 
line scans can identify diffusion fronts, secondary mineral microdomains, and compositional 
zonation associated with cracks or pore spaces. 

4. Provide robust comparability across specimens of differing preservation. Quantitative 
microprobe data permit objective comparison when macroscopic appearance is misleading. 

2.3. Why both WDS and EDS are needed  
Although both WDS and EDS detect characteristic X‑rays generated under the electron 

beam, they differ in spectral resolution, sensitivity, and analytical reliability. Fossil teeth frequently 
contain complex, mixed-phase assemblages (apatite plus diagenetic precipitates), making spectral 
interferences and low-level substitutions a routine problem. Employing both techniques is 
therefore scientifically justified. EDS (energy-dispersive spectroscopy) is used to: 

a) Rapidly screen phases and heterogeneities. EDS is well suited for reconnaissance 
mapping to locate diagenetic phases (e.g., Fe-rich coatings, Mn oxides, silica infill, carbonate 
cement) and to prioritise domains for quantitative work. 

b) Provide broad-area compositional maps quickly. This is valuable for documenting 
preservation variability within a single tooth, and for identifying “least altered” regions for 
subsequent WDS/EPMA. 

However, EDS has limitations relevant to enameloid studies: lower energy resolution 
increases the risk of peak overlaps; detection limits are typically poorer for trace-to-minor 
elements; and quantification of light elements (notably F, Na, Mg) can be less reliable in complex 
matrices. WDS (wavelength-dispersive spectroscopy) is used to: 

a) Obtain high-precision, interference-resolved quantification. WDS provides superior spectral 
resolution, reducing misidentification and improving accuracy where peak overlaps matter. 

b) Measure minor and light elements critical to apatite chemistry. In fossil enameloid, 
elements such as F, Na, Mg, S, and Cl can be pivotal for distinguishing primary mineralisation from 
diagenetic fluoridation or contamination; WDS typically delivers the precision and lower detection 
limits needed for these interpretations. 

c) Support defensible comparisons among differently preserved specimens. Because WDS 
is more robust for subtle compositional differences, it is preferable for testing hypotheses about 
diagenetic overprint versus retained biogenic signals. 

Thus, EDS is most effective for efficient phase recognition and spatial reconnaissance, 
whereas WDS is essential for rigorous, publication-grade quantification of key elements in apatite 
and associated alteration products. 

2.4. Biogeographical aspects of SEM visualization and EPMA/WDS/EDS analysis 
of elasmobranch teeth. 

When fossil shark teeth are collected from different geographic regions, deposits with 
contrasting geochemical regimes, different continents, and different palaeo-oceans and 
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palaeoclimates, the main scientific challenge is comparability: you must separate (i) original 
biological and environmental signals recorded in enameloid/dentine from (ii) locality-specific 
diagenetic overprint (replacement, recrystallisation, elemental uptake). The combined use of SEM, 
EPMA, WDS and EDS is justified because it links microstructure to chemistry at the same spatial 
scale where both primary growth features and diagenetic alteration occur. 

EPMA or SEM with WDS and/or EDS provides the microstructural and taphonomic 
“context” needed before any geochemical interpretation can be trusted. 

a) Assess preservation and diagenesis directly: SEM imaging (especially BSE) reveals 
recrystallisation textures, secondary cements/infillings, microcracks, and porosity networks that 
control fluid access. These features vary strongly between deposits and between 
palaeoceanographic regimes. 

b) Resolve enameloid ultrastructure: Shark enameloid has diagnostic crystallite structures 
(orientation, bundles, layering) that can be partially destroyed or mimicked by diagenetic mosaics. 
SEM with WDS and/or EDS can distinguish preserved ultrastructure from replacement textures 
and their chemical mapping. 

c) Define where to analyse: Because alteration is often patchy within a single tooth, SEM is 
essential for selecting minimally altered enameloid/dentine domains and avoiding contaminated 
margins or crack-hosted precipitates. Without microanalysis (such as EPMA), chemical differences 
could simply reflect unequal preservation, not real palaeoenvironmental variation. EPMA provides 
quantitative, micrometre-scale element concentrations, which is the appropriate scale for tooth 
tissues and alteration fronts. 

d) Quantify apatite chemistry and substitutions: Measuring Ca and P plus minor elements 
(e.g., F, Na, Mg, S, Cl, Sr) helps determine whether the tissue remains close to biogenic apatite or 
has been chemically transformed (e.g., ion exchange which can be correlated with different 
geochemical and paleogeographical conditions). EPMA therefore underpins any attempt to 
compare fossils from different basins, continents, and palaeoclimatic zones. 

EDS (energy-dispersive X-ray spectroscopy) advantages are:  
– Fast phase identification and screening: Quickly shows where Fe/Mn-rich coatings, silica 

infillings, carbonate cements, or clay contamination occur—features that can differ systematically 
between deposits and continents. 

– Rapid compositional mapping: Useful for documenting heterogeneity across many 
specimens/localities and for choosing targets for precise analyses. 

WDS (wavelength-dispersive X-ray spectroscopy) advantages are: 
– Higher spectral resolution and fewer peak-overlap problems: Critical in apatite-rich 

materials where interferences can bias results, especially when comparing subtle differences 
between regions. 

– Better precision and lower detection limits for key minor/light elements: Elements such as 
F, Na, Mg, S and Cl are central for diagnosing diagenetic alteration versus primary signals; WDS is 
typically required for defensible measurements. 

– Stronger basis for inter-site comparisons: When interpreting differences between palaeo-
oceans/palaeoclimates, you often expect small but meaningful shifts in composition; WDS provides 
the analytical confidence to test those hypotheses. 

Why this complex integrated approach is essential for multi-continent, multi-basin 
palaeoenvironmental interpretation? Different deposits and palaeo-oceans impose different 
diagenetic pathways (fluid chemistry, temperature, burial history, redox conditions), which can 
overprint teeth in different ways. The combined SEM–EPMA–EDS/WDS workflow allows you to: 

a) Distinguish primary (biogenic/environmental) signals from secondary (diagenetic) 
signals by tying chemistry to microtextures and alteration pathways. 

b) Identify and exclude altered domains so comparisons between continents are not driven 
by uneven preservation. 

c) Document deposit-specific diagenetic signatures (e.g., crack-hosted Fe–Mn enrichments, 
fluoridation halos, cement infiltration), preventing false palaeoclimatic or palaeoceanographic 
conclusions. 

d) Produce reproducible, standardised datasets suitable for large-scale geographic and 
stratigraphic comparisons. 
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2.5. Old SEM automation 
2.5.1. Reprogramming of the SEM Registration System Based on DIGIC III 

Processor. 
For SEM image and video registration a DIY system was adapted with a Canon A590IS CCD 

sensor (maximum resolution 3264 x 2448 pixels in static mode; maximum video recording 
resolution 640x480 with a maximum video frame rate of 30 frames per second when using the 
MJPEG video codec) and a Canon DIGIC III image processor, synchronized directly from the 
control system of the electron microscope through a special cable based on a universal bus cable. 
The registration system was mounted on a 3D-printed module, compatible in size with the Canon 
A590IS mount. The key requirement for the image registration system implemented on the DIGIC 
processor was supporting of CHDK - a resident program that expands the control functions of 
Canon digital cameras. CHDK program was installed to the SD card as follows: 

1. On a PC with pre-installed JAVA, the installer of CHDK (“STICK”) was unpacked and 
one of its files – either STICK.BAT or STICK.CMD was started (one of them may not provide a 
successful CHDK installation). 

2. Testing was performed using a random SEM image. 
3. After completion, the flag on the memory card was transferred to the “Lock” position. 
4. Using the camera buttons <Print> and <Menu> CHDK menu was entered. 
5. Pressing <Set> allowed to enter the <Enhanced photo operations> section. 
6. Using the <Set>, <Up> and <Down> buttons, the following camera parameters were set: 
a. Disable overrides – No 
b. Override TV type – long exp 
c. Long exp value – the exposure required by the SEM (in the case of Jeol JSM-T330A it is 38 

seconds for scanning) 
d. Override AV, Override ISO, Subj dist – the following values for aperture, ISO and focal 

length were applied: 20, 12 and 250. After setting the numerical values of the above parameters, 
checkboxes should appear to the left of the values, confirming the values entered 

e. Disable overrides on start – the corresponding checkmark should be removed, since this 
option makes CHDK save the values entered after the camera is turned off. 

7. Double clicking <Menu> returns to the main menu, and then using <Set>, <Up>, 
<Down> find "CHDK settings" section, "Remote parameters" subsection. 

8. "Enable remote", "Switch type – one push", "Control mode – normal" parameters were set. 
2.5.2. Synchronization Line Upgrade.  
A new synchronization line was developed to control the photoregistration procedure. 

To synchronize with SEM, pulses with a voltage of 3-5 V and a current of up to 10 milliamperes 
were used, supplied through the power lines of the USB input of the camera with the standard 
polarity. The appearance of the signal is equivalent to a partial pressing the photographing button, 
and the disappearance of the signal is equivalent to pressing the button completely (i.e., starting 
the photographing). When creating a synchronization line between Jeol JSM-T330A and Canon 
A590IS using a USB-A - mini-USB-B cable, the following operations were performed: 

1. USB-A connector was cut off, after which it was required to free, strip and tin the black and 
red wires (color marking is standard for the universal serial bus), the white and green wires can be 
cut off. 

2. The cap on the right side of the front panel of the electron microscope was removed and 
the screws for fixing the strip with the <Shutter> button were unscrewed. 

3. The ground and power lines were found on the board nearest to the <Shutter> button 
using easily detectable designations on the pinout of any microcircuit: ground is designated as Gnd, 
power as Vcc. The <Shutter> button has two switch contact groups, one of which is not used. 
To the latter unused normally open pair of contacts the red wire of the USB cable and the power 
line found in accordance with the above instructions were soldered. 

4. The black wire was soldered to the ground line. 
5. The criterion for correctness during testing of the system was that when the cable was 

connected to the camera and the <Shutter> button was pressed, shooting automatically starts. 
The advantages of Canon A590IS include the ability to simultaneously connect a USB cable, 

a power supply and an analog video signal transduction cable. Therefore, we also implemented an 
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image output to the analog monitor from the analog signal transmission cable. It is also possible to use 
a camera that does not have an additional power input and video output, but it is less convenient. 

2.5.3. Creating an Adapter for Optical Registration Tract from the SEM CRT.  
A special adapter was created for optical connection of the camera to the microscope screen. 

Its parameters depend on the system used. For the case of the Jeol JSM-T330A – Canon A590IS 
system, the following model was used: https://www.tinkercad.com/things/2i7MgsxqgKt-sem 
(Figure 1). The model was printed on a standard type 3D printer with black PLA filament FDplast. 
There are no specific requirements for the surface treatment of such products. However, when 
preparing a 3D model for printing, it is necessary to make sure that no supports are added inside 
the side tube. The rest of the settings are standard. 

  

  
Fig. 1. 3D printable adapter for optical registration tract from the CRT of the JEOL SEM 

 
The adapter is attached to the film camera mounting system of the microscope, and the 

Canon A590IS is attached using a cable tie that goes through the side tube (Figure 2). 
 

 
 
Fig. 2. Canon A590IS fixation on the 3D printable adapter for optical registration tract from the CRT 
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2.5.4. Power Supply Optimization.  
A power supply unit (3 V, plus in the center) was connected to the registration system, 

allowing it to operate without using batteries or accumulators. In this case, automatic shutdown 
was disabled in the camera settings, and the screen was turned off in the CHDK settings (<Print> -
> <Menu> -> “CHDK settings”, then “Disable LCD off” is selected and using the <Set> button is 
switched to the "always on" mode). 

2.5.5. Output To An External Liquid Crystal Or Plasma Monitor. 
It is also possible to improve the view of the small screen of the microscope by connecting to 

the camera a TV with analog video input via AVC-BC300 or STV-250N cable or a standard 
camcorder cable (see the scheme below) or the Scart input (via the same cable and Video-Scart 
adapter). The above scheme is shown in details in Fig. 3, and the resulting view of the system after 
upgrade is shown in Figure 4. 

 

 
 
Fig. 3. Contact scheme for the Canon A590IS 

 

 
 
Fig. 4. General view of the installation after upgrade 
 

  
a 
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b 
 
Fig. 5. Installation configuring on the Canon A590IS panel for the SEM image registration 

 
2.5.6. Photography Process After Upgrade.  
a) The following procedures are required to obtain digital SEM images from Jeol JSM-

T330A: 
1. Adjustment of the image parameters is carried out as usual using the knobs and buttons 

on the electron microscope control panel. 
2. The minimum Spot size is set, brightness and contrast are matched. 
3. The exposure time of frames is adjusted (in the case of Jeol JSM-T330A press the “Qucik” 

key located to the left of the “Shutter” button). 
4. The photocamera cover is closed. 
5. The camera turns on. In the case of Canon A590IS, the camera should be in “M” (manual) 

mode and manual focus should be selected (approximately 20-25). 
6. For Jeol JSM-T330A, it is necessary to achieve blanking of the screen persistence. 

For this, the "Slow 1" key is dropped first; without releasing it, one needs to wait 3-4 seconds; after 
that the “Shutter” key is lowered, the “Slow 1” key is released, then the “Shutter” key is also released 
(Figure 5). 

7. If everything has been done correctly, the camera takes a frame from the microscope 
screen during the exposure time, then during the same time it takes a dark frame, subtracts the 
latter fro the former, and saves it at the SD card. 

8. The images obtained can be conveniently processed by IrfanView softwave in the following 
algorithm: “File → Batch conversion/rename → Advanced”. In particular, monochromatization, 
cropping, contrasting (if necessary) can be carried out through this algorithm in batch processing 
of the entire image series stereotypically (Figure 6). 

 

  
a 
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b 
 
Fig. 6. Basic SEM image processing configuration for IrfanView softwave 

 

 
a 
 
Fig. 7. Elasmobranch tooth samples on the rotating SEM stage (standpoint A) 
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b 
 
Fig. 7. Elasmobranch tooth samples on the rotating SEM stage (standpoint B).  

 
3. Results 
Results – SEM micrograph images of fossilized elasmobranchs/fossil shark teeth at different 

magnifications in the image series below (for small teeth which can be analyzed on the rotating 
stage of the SEM – see Figure 7a, Figure 7b – and on the Rowland circle): 

Figure 8. General view of the tooth at 35x, scale bar – 500 µm. Acceleration voltage – 5 kV. 
Figure 8a shows the micrograph of the final product; Figure 8b shows its colorization using 
artificial intelligence. 

 

   
a  
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b 
 
Fig. 8. General view of the tooth at 35x magnification (a – original micrograph; b – its colorization 
using artificial intelligence), scale bar/scale bar – 500 µm. Acceleration voltage – 5 kV 
 

 
 
Fig. 9. The same sample. Magnification 75x, scalebar 100 μm, accelerating voltage 5 kV 
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Fig. 10. The same sample. Magnification 100x, scalebar 100 μm, accelerating voltage 5 kV 
 

 
 
Fig. 11. The same sample. Magnification 200x, scalebar 100 μm, accelerating voltage 5 kV 
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Fig. 12. The same sample. Magnification 750x, scalebar 10 μm, accelerating voltage 5 kV 
 

 
 
Fig. 13. The same sample. Magnification 1500x, scalebar 10 μm, accelerating voltage 5 kV 
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Fig. 14a. The same sample. Magnification 5000x, accelerating voltage 5 kV 
 

 
 
Fig. 14b. The same sample. Magnification 5000x, accelerating voltage 5 kV (another ROI) 

 
 

22 
 



European Geographical Studies. 2025. 12(1) 

 
 
Fig. 15. The same sample. Magnification 10,000x, accelerating voltage 5 kV 

 
4. Conclusion 
Fossil elasmobranch teeth collected from multiple geographic regions, contrasting 

depositional settings, and different palaeo-oceans/palaeoclimates offer valuable archives of past 
marine conditions, but they pose a general analytical challenge for us: ensuring comparability 
among samples affected by locality-specific diagenesis. Primary biological and environmental 
signatures in enameloid and dentine can be partially overprinted by recrystallisation, mineral 
replacement, and post-burial elemental uptake. To discriminate these signals reliably, 
an integrated microstructural–geochemical workflow is required in which scanning electron 
microscopy is combined with electron-probe microanalysis with energy-dispersive (EDS) and 
wavelength-dispersive (WDS) X-ray spectroscopy. Deposits formed in different basins, palaeo-
continents and palaeo-oceans commonly experienced contrasting diagenetic histories (chemistry, 
burial temperature, sedimentation time and substitution, redox state of the environment). These 
factors can overprint tooth tissues in ways that mimic or obscure primary biological/environmental 
signals. SEM provides the necessary taphonomic and microstructural context prior to geochemical 
interpretation. Backscattered-electron imaging and high-resolution secondary-electron imaging 
allow direct assessment of sample preservation states. SEM also resolves diagnostic enameloid 
ultrastructure, enabling the distinction between preserved biogenic fabrics and diagenetic mosaics 
that may mimic original biogenic features. 
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Abstract 
In this brief introductory review, we provide a basic understanding level/basic principles of 

the biogeography, geoecology/hydroecology, and geochemical role of the plastisphere and the 
species diversity of microorganisms in the plastisphere. The final section of the article presents a 
number of experimental approaches and photographs of the instruments used to study it. 
The technical part of this review is based on the groundwork of a 2018 workshop on microplastic 
analysis methods, prepared for demonstration at the Institute of Physical Chemistry/ 
Physicochemical Institute in Moscow (however, without using outdated references). Unfortunately, 
this work could not be implemented due to the closure of the Moscow base of this institute. 
However, the general philosophy of this research not only remains relevant today (given the 
increasing technical capabilities of modern science) but is also becoming increasingly relevant as 
microplastic pollution of the biosphere increases and the microbiota evolves in the face of climate 
change. In shortened and terminologically simplified version, this elementary review may be useful 
to readers, starting with junior students. 

Keywords: plastisphere, microplastic, technosphere, geomicrobiology, geoecology, 
hydroecology, micro-particle analyzer, EPMA. 

 
1. Пластисфера как новая эволюционная геосферная оболочка 

планетарного масштаба. 
Общеизвестно, что пластисфера является очередной геосферной «оболочкой»  

планетарного масштаба, в которой на инертном плохо разлагаемом органическом веществе 
существуют микроорганизмы (биопленки (Di Pippo et al., 2022; Yu et al., 2023)) и целые 
экологические сообщества. Кючевым понятием в развитии пластисферы является 
микробиологическая колонизация поверхности пластика (“microbial colonization”, “bacterial 
colonization” (Agostini et al., 2021; Kelly et al., 2022; Stevenson et al., 2023; Zhai et al., 2023; Silva 
et al., 2023)). Разнообразие сообществ и взаимодействий на колонизированных 
поверхностях пластика и с окружающей средой позволяет говорить об экологии 
пластисферы (Amaral-Zettler et al., 2020; Nguyen et al., 2023). Стабильность по составу 
подложек – пластиков приводит к возможности проявления постоянства трендов эволюции 
микроорганизмов в данной среде, в силу чего для каждого типа сред нахождения 
соответствующего пластика формируется стабильная ниша (Yokoyama et al., 2023), в которой 
процессы эволюции микроорганизмов идут в одном направлении, закрепляя в отборе 
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комплексно формирующиеся особенности физиологии микроорганизмов, оптимальные для 
разложения данного пластика (Delacuvellerie et al., 2022; Chen et al., 2024). Вместе с тем, идёт 
дивергенция между специализированными для разных химически составов пластика  
линиями микроорганизмов.  

Одним из классических примеров эволюции в пластисфере является изменение и, как 
правило, усиление антибиотикорезистентности микроорганизмов пластисферы (Junaid et 
al., 2022). Отсюда понятно, что методы анализа и контроля/мониторинга данных сообществ 
относятся не к геномике отдельных видов, а к метагеномике всего сообщества и к 
метатранскриптомике пластисферы (Wu et al., 2022) (относительно применимости 
нанопоровых технологий секвенирования для метагеномов мы писали в (Maklakova et al., 
2021; Adamovich, Gradov, 2024)). Кроме того, они должны учитывать факторы среды, 
по отношению к которым идет отбор, в том числе абиотические и ксенобиотические, 
к которым относятся, если трактовать термин широко, перманентные токсикологические и 
фармакологические загрязнения (например – органические факторы эвтрофикации или 
постоянно аккумулируемые в биосфере антропогенные органические стоки (Lin et al., 2024)).  

 
2. Биоразнообразие и биогеографическое разнообразие пластисферы 
Следует отметить, что в состав пластисферы входят не только бактерии на пластике в 

почве или гидросфере (Luo et al., 2022). Нужно анализировать пластисферу как геосферную 
оболочку во всей полноте сообществ, межвидовых и межтаксонных взаимодействий 
(Amaral-Zettler et al., 2021; Žuna Pfeiffer et al., 2022).  

В составе пластисферы в гидросфере находят фитопланктон и зоопланктон (Cheng et 
al., 2021; Balkić et al., 2022). В последнее время всё громче звучат призывы учета диатомовых 
водорослей пластисферы и макроскопических беспозвоночных (Taurozzi et al., 2023). 
В состав почвенной пластисферы входят также обитатели ризосферы (Ran et al., 2024), 
не исключая (но и не ограничиваясь ими) клубеньковых бактерий-азотфиксаторов и 
простейших, обитающих на интерфейсе между пластиком и средой в межвидовых 
сообществах на поверхности мульчи (Luo et al., 2022; Wang et al., 2023; Li et al., 2024). Одни 
таксоны организмов могут считаться специфическими только для почвенной или только для 
водной пластисферы, а другие могут быть и водными, и наземными. Например, различные 
грибы и слизевики в пластисфере встречаются не только в почве, но и в речной и 
прибрежной зоне (Pietrelli et al., 2017; Xue et al., 2021). Очевидно, что вирусы и плазмиды, 
встречаясь у разных бактерий (не только бактериофаги), могут встречаться в пластисфере 
пресноводных, соленоводных, почвенных, эдафологических и других мест обитания (Li et 
al., 2022; Kutralam-Muniasamy et al., 2024) (почвенная пластисфера – «soil plastisphere» – 
с биогеографических позиций, представляет собой частный случай наземной пластисферы – 
«terrestrial plastisphere» (MacLean et al., 2021; Rillig et al., 2024)).  

В настоящее время часто выделяют следующие типы или биотопы  водных пластисфер 
(в силу различий, как биохимических, так и биогеохимических, между микробными 
сообществами пресноводных и морских экосистем (Wen et al., 2020; Dey et al., 2022)):  

– Пресноводная пластисфера (freshwater plastisphere) (Barros, Seena, 2021; Song et al., 
2023; Xu et al., 2024; Bocci et al., 2024), в том числе речная пластисфера (Zadjelovic et al., 
2023; Xu et al., 2023; Silva et al., 2024) и специфически выделяемая из-за антропогенного 
загрязнения речная пластисфера урбанизированных местностей (Zhu et al., 2023).  

– Пластисфера дождевой воды и воздействия дождевых вод на пластисферу рек, озер, 
морей и океанов, искусственных водохранилищ и т.д. (см., напр. (Wu et al., 2023)). 

– Морская пластисфера (Zettler et al., 2013; Du et al., 2022; Barbe et al., 2024; Lacerda et 
al., 2024) (в которой отдельно выделяют пластисферу мелководья (Tigreros-Benavides et al., 
2024), а в принципе можно было бы выделить также пластисферу пелагиали, пластисферу 
абиссали и т.д.). 

– Озёрная пластисфера и пластисфера озёрных отложений (Yang et al., 2023). 
– Пластисфера эстуариев (Forero-López et al., 2022; Sosa, Chen, 2022; Su et al., 2022; 

Sérvulo et al., 2023). 
– Пластисфера побережий и пляжей (Chaimusik et al., 2024). 
И т. д. 
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К гибридным дисперсным или soft mater carrier based «биотопам» пластисферы 
относят  

– Седиментологические формы пластисферы, в том числе на пластиковом дебрисе в 
пределах маршевых отложений (Rosato et al., 2022: Koh et al., 2023)). 

– Пластисферу техногенных и антропогенных муниципальных стоков и пластисферу 
свалок твердых бытовых отходов (Lin et al., 2023; Ye et al., 2024). 

– Пластисферу заболоченных местностей (эдафологическая пластиомика – 
недоизведанная отрасль, но в целом ряде заболоченных и антропогенно загрязненных 
местностей на территории Евразии она может найти себе применение). 

Как дорожную карту развития исследований в области пластисферы, различных по 
биогеографической локализации исследований можно использовать не более десятка 
современных пропозициональных работ (в качестве примера можно привести 
(Dąbrowska, 2021)). 

В действительности, определение биотопов пластисферы требует учета 
биогеографических условий, так как биотопы арктических морей неэквивалентны южным 
морским или средиземноморским биотопам, равно как и наземные биотопы пластисферы в 
области вечной мерзлоты и таликов отличаются от биотопов криозоны в области 
Антарктиды. Микробы, деградирующие пластик, в Арктике и в Альпах существенно 
отличаются (Rüthi et al., 2023). Морские биотопы пластисферы зависят от солености воды и 
нередко бывают в большей степени похожи на пресноводные биотопы. В то же время в 
некоторых солевых озерах галофильные виды делают формирующиеся микробные сообщества 
похожими на морские. Известно явление зависимости биодеградируемости микропластика от 
местоположения на линии «пресные воды – морские воды» (Zhou et al., 2023). 

В то же время, известно влияние климата на формирование биотопов пластисферы. 
Глобальное потепление климата как тренд, несомненно, влияет на изменение видового 
состава биопленок и биотопов пластисферы, а также на состав выделяемых при 
биоразложении пластика в соответствующих условиях летучих и нелетучих продуктов (Ji et 
al., 2022). Однако и одиночные климатические события (ураганы, снежные заносы, 
экстремальная жара, наводнения) рассматривают как наемаловажный фактор для эволюции 
пластисферы (Karkanorachaki et al., 2023). Примером таковых событий, имеющих чётко 
прослеживаемые механизмы воздействия на микробиоту пластисферы, может быть 
активируемое турбулентностью тайфуна перераспределение микропластика, приводящее к 
реформированию микробных сообществ пластисферы (Chen et al., 2021). В рамках теории 
катастроф можно обобщить этот результат на многие и разноплановые по происхождению 
факторы, в результате которых или после которых микробное сообщество проходит точку 
бифуркации и качественно изменяет свой метаболический и микроэкологический профиль. 

 
3. Геохимическая и аэрохимическая активность пластисферы 
Геохимическая и аэрохимическая активность пластисферы включает в себя азотный 

метаболизм микробов и биогеохимические циклы азота (Huang et al., 2024), фосфора (Song 
et al., 2024), углерода (Kirstein et al., 2019; Cornejo-D'Ottone et al., 2020; Shan et al., 2023)), 
а также биоаккумуляцию металлов в пластисфере (Tarchi et al., 2023; Lenoble et al., 2024). 
В силу наличия активности в области микрочастиц металлов, включая железо, логично 
говорить о возможности протекания фото-фентон-процессов на поверхности микропластика 
и иных элементов пластисферы при открытом их экспонировании, в том числе в океане 
(Lu et al., 2024). Точнее геохимическая активность пластисферы может быть рассмотрена 
через призму активности ионных каналов (Gradov, 2016a; Александров, Градов, 2017; 
Gradov, 2018) или анализ расширенного фенотипа микроорганизмов соответствующих 
местообитаний (Gradov, 2016b).  

 
4. Константна ли граница биодеградируемых и небиодеградируемых 

пластиков в пластисфере? 
Известны биопленки и другие проявления пластисферы на таких широко 

распространенных пластиках (как продуктах нефтехимического синтеза (Pang et al., 2023), так и 
биопластиках, сгенерированных микроорганизмами, таких как полигидроксибутират), как: 
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– полиэтилен (Delacuvellerie et al., 2019; Joshi et al., 2022; Wang et al., 2023; Zhang et al., 
2023); 

– полипропилен (Sun et al., 2023); 
– полиэтилентерефталат (Wright et al., 2021); 
– полистирол (Poeta et al., 2017); 
– полиуретан (Park et al., 2023); 
– полибутилен сукцинат и сукцинат-ко-адипат полибутилена (Kimura et al., 2023; 

Tanunchai et al., 2023); 
– полигидроксиалканоаты, в частности – полигидроксибутират (Vannini et al., 2021); 
– полибутиленадипаттерефталат и его бленды с полилактидом (Chen et al., 2023); 
– нейлон (Collins et al., 2023). 
Можно видеть, что речь идёт как о биодеградируемых полимерах, так и об обычных 

пластиках (Jacquin et al., 2019; Behera, Das, 2023). 
Впрочем в данном случае вопрос принадлежности пластиков пластисферы следует 

относить к числу нерешенных. И каждое новое сообщение о нахождении новых ферментов, 
способствующих биодеградации пластика в пластисфере (Frey et al., 2024), дальше сдвигает 
границу этой неопределенности или расширенной трактовки (особо, если исходить 
впоследствии из метагеномики, позволяющей понять потенциал биоразложения 
конкретных многовидовых сообществ, сложившихся в конкретных условиях (Saleem et al., 
2023)). Сдвигает границы между неразлагаемыми и биоразлагаемыми материалами в 
пластисфере также и пластиомика ("plastiomics") – наука о пластиоме ("plastiome" = 
plastisphere-enriched mobile resistome (Guruge et al., 2024)); одна из новых мультиомиксных 
наук, приводящих в перспективе к полному анализу микробного разнообразия пластисферы 
и мультиомиксной характеризации биодеградации и связанной с ней сукцессии в 
многовидовых сообществах (Wright et al., 2021a; Tiwari et al., 2022). Как известно, в пластики 
часто закладывают компоненты, резистентные по отношению к биоразложению или 
антимикробные по сути. В результате же эволюции, упомянутой в начале статьи, происходит 
отбор микроорганизмов пластисферы по критерию резистентности к данным факторам 
(Stevenson et al., 2024) и выработка совокупности генов резистентности к данным добавкам 
– (т.н. "resistome"). Поэтому в настоящее время адаптация микроорганизмов к 
распространению в пластисфере обычно также рассматривается как путь к появлению в 
окружающей среде резистентных штаммов (Zagui et al., 2022). В частности, из этого следует, 
что следующие поколения и новые штаммы микроорганизмов будут разлагать резистентные 
к более ранним формам и габитусам (как коррелятам экониш и изменяющихся условий 
среды (Xie et al., 2023)) тех же микроорганизмов материалы! Таксономические границы 
биоразложения будут стремительно меняться с эволюцией пластисферы, отдельных 
штаммов и видов микроорганизмов и микробных сообществ в ней. 

 
5. Пластисфера почв 
Теперь перейдём к почве и действию микрофлоры из почвенной пластисферы на 

биоразложение пластиков в ней. Мы не будем ограничиваться бактериями – так как в 
биоразложении принимают существенное участие и почвенные грибы. В наших ранних 
работах с использованием лабораторий на чипе или оптофлюидных сенсоров с полимерным 
покрытием, погружаемым в почву, мы установили, что в ходе биоразложения качество 
изображения на погружном сенсоре меняется, в силу разложения полимера или 
воздействия микроорганизмов и среды на полимер. Позже мы пытались подойти к задаче 
исследования этого эффекта с позиций масс-спектрометрического (для обеспечения "omics 
approach") или иного локализованного химического анализа (Jablokov et al., 2017; Jablokov et 
al., 2018; Orekhov, Gradov, 2022; Orekhov, Gradov, 2023), однако же нами была допущена 
ошибка в конструкции чипа – оказалось, что полимер в гибридных чипах ионизируется под 
лазерным пучком и искажает результаты эксперимента. Поэтому необходимо создание 
чипов, которые в своей конструкции не содержат никаких иных полимеров (ни в форме 
адгезивов, ни в форме гереметиков, ни в форме красящих или защитных покрытий), если 
мы хотим точно исследовать именно биодеградацию либо почвенно-геохимическую 
деградацию конкретных полимеров в почвенной пластисфере. 
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Пластисфера почв, вероятно, является наиболее изученной частью глобальной 
пластисферы (Rillig et al., 2024). Для неё найдены оптимальные методы исследования, 
выявлены воздействия различных факторов и экологических условий, реализована полная 
или почти полная биогеохимическая расшифровка механизмов организующих и 
обеспечивающих функциональность микробиоты пластисферы в почве, исследованы 
видовые роли и распреденения различных по функциональности организмов-деструкторов на 
интерфейсах абиогенного и биокосного вещества (rare and abundant microorganisms between 
plastisphere and soils) (Sun et al., 2022; Wanget al., 2022). Изучены редокс-процессы и эффекты 
рН и Eh on shaping plastisphere bacterial communities in soil, в том числе в зависимости от 
содержания микроэлементов и химических контаминантов в почве (Li et al., 2021). 

В случае почвенной пластисферы исследованы множественные эффекты действия 
тяжелых металлов и дезинфектантов на антибиотикорезистентность почвенных 
микроорганизмов и сообществ пластисферы (Xiang et al., 2022; Ni et al., 2024). Они 
исследованы не только для микроорганизмов, но и для мезофауны почвы. В связи с этим, 
данные эффекты могут считаться наиболее предсказуемыми, по отношению к 
биогеохимическим эффектам для экзотических биотопов, а почва может считаться 
естественной лабораторией или биополигоном для отработки навыков работы с 
экологическими, биогеохимическими и материаловедческими (биодеградация) аспектами 
пластисферы (если не принимать во внимание размывающие смысл концептуальные 
обобщения уровня "continental-scale microcosm" (Sun et al., 2024)).  

В конкретных случаях, имеющих практическое значение, в почве разлагаются вполне 
конкретные полимеры или композиты известного происхождения – от техногенного 
(т. е., по умолчанию, исходно не содержащего патогенной микрофлоры) до антропогенного 
генеза (например, накопившиеся за время пандемии COVID в почве маски и респираторы, 
потенциально содержащие бактерии из выдоха человека (Li et al., 2023; Cheng et al., 2024; 
Gradov, 2025), а также специальные фильтры инфекционных медучреждений). Пористые и 
волокнистые, в том числе нетканые материалы являются в этом аспекте сборщиками для 
микробиома почвенной пластисферы (Rohrbach et al., 2023), но их эффективность сильно 
зависит от свойств материала, включая измеримую пористость (Grigorieva et al., 2021; 
Grigorieva et al., 2022; Grigorieva et al., 2023; Grigorieva et al., 2025; Maklakova et al., 2021), так 
как размеры пор должны соответствовать размерам микроорганизмов и быть не меньше их.  

Нередко в почве после мульчирования находятся небиодеградируемые фрагменты 
микроспластика (Li et al., 2024). В некоторых случаях даже потенциально биоразлагаемые 
компоненты не смогут быть разложены, в силу несоответствия размерам возможной 
колониеобразующей единицы размеров остающегося стабильного островка полимера или 
композита (Zhao et al., 2023). В некоторых случаях в почве могут обнаружиться (или быть в 
нее специально заложенными в ходе удобрения почв) также фрагменты, способные к 
постепенному высвобождению определенных химических агентов (Tian et al., 2024). 

 
6. Важность имэджинговых и мэппинговых исследований и методов 

микроскопии для характеризации объектов пластисферы 
Из вышеизложенного следует, что характеризацию объектов пластисферы следует 

производить дискретно и с геодезической привязкой в биолого-географическом аспекте и с 
пространственно-временной метрикой в ходе исследования климатических и 
метеорологических влияний на пластисферу. Более того, из вышеизложенных 
теоретических и библиографических предпосылок следует необходимость внедрения 
микроскопических или, корректнее, микроаналитических методов высокого разрешения 
(включая MALDI imaging или конфокальную рамановскую микроскопию) в исследования 
пластисферы и продуктов её биологической и/или экологической активности. 

Действительно, ещё  пять лет назад в классической статье задан вопрос: «Кто есть где в 
пластисфере?» («Who is where in the Plastisphere?») (Arias-Andres et al., 2020). Ответить на 
него без высокоразрешающих (или же позиционно-чувствительных) биогеографических и 
химико-экологических карт (беспрецедентного для других биотопов разрешения – из-за 
малости объектов исследования и их локализации, например - на частицах микропластика) 
не представлялось бы возможным. 
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Если говорить о микропластике и иных объектах пластисферы, то нужно также понять 
когда он выступает как ресурс для роста (то есть биодеградируется), а когда выступает 
только лишь как подложка, на которой растут микроорганизмы, питаясь совсем другими 
ресурсами окружающей среды (вопрос «Пищевой ресурс или только бесплатное средство 
для путешествий» – "Food or just a free ride?" – актуальный как для одиночных частиц либо 
фрагментированных пленок пластика, так и для пластисферы в целом (Wright et al., 2021b)).  

Известное явление пространственного перекрывания областей жизни или ареалов 
основных и случайных таксонов в пластисфере также затрудняет возможность точной 
позиционно-чувствительной идентификации функций/биохимических ролей 
микроорганизмов в микробном сообществе и многослойных пленках пластисферы (Zhang et 
al., 2022). Происходящая в пространстве-времени сукцессия видов в многовидовом 
микробном сообществе, сообразно изменяющимся условиям среды (климатическим или 
субстратным, в том числе по мере трансформации при биоразложении многослойных или 
многокомпонентных композитов, в том числе - фрагментов ламинатов и армированных 
небиодеградируемыми компонентами биопластиков), требует пространственно-временного 
и кепстрального анализа микробных сообществ пластисферы и их потенциала для 
биодеградации пластиков (Miao et al., 2023). В последнем случае в популяциях или 
микробных сообществах могут происходить как дивергентные процессы, так и процессы 
конвергенции в процессе сукцессии и перекрывания областей существования/ 
микроареалов (Wu et al., 2024; Zhang et al., 2024).  

По этой причине в последнее время много авторов выступают за картирование и 
иэджинг микроскопических микробных сообществ на пластике, в частности на морском 
пластике для установления пространственной структуры пластисферы (Schlundt et al., 2020).  

 
7. Низкобюджетные методы.  
По аналогии с анализом вклада геоморфологии и ландшафта в эволюцию на 

макроскопическом уровне, в случае микробных сообществ представляется возможным 
анализ вклада геометрии поверхности/микрорельефа/микрошероховатости и/или 
наношероховатости микропластика на эволюцию микробных сообществ (Dąbrowska et al., 
2021). Многие авторы (как правило, с лучшим техническим оснащением лабораторий) 
говорят не только об имиджинге образцов пластисферы, но и о микроанализе, вплоть до 
локального стабильно-изотопного анализа and nanoSIMS single-cell imaging для определения 
колонизаторов пластисферы, по крайней мере, в почвенных условиях (Xiang et al., 2024).  

Большим, как правило, коллаборативным (то есть "межведомственным") коллективам 
автором доступны не только исследования одиночных образцов на микроуровне, но и 
создание баз данных, соотносящих подобные исследования микрообразцов с 
географическими картами их локализации и метагеномными репрезентациями эволюции 
микробных сообществ. Высшим пилотажем считается анализ воздействия микробных 
сообществ с пластисферы на результаты поглощения микропластика другими видами 
живых организмов, различающихся по динамической локализации и картам миграций, 
биогеографическим и трофическим характеристикам. Как пример последнего подхода 
можно предложить новейшую работу по вкладу микропластика и ассоциированной с ним 
микробиоты плаcтисферы на физиологические и биохимические характеристики, а также 
паттерны экспрессии генов фильтрующих морскую воду ланцетников (Cheng et al., 2023). 
Очевидно, что подобные работы возможны также и для всех организмов-фильтраторов. 
Со временем таких работ, очевидно, будет появляться всё больше и больше. Но утверждение 
это верно только для лабораторий, имеющих достаточно современное оснащение.  

Большинство российских и постсоветских лабораторий не обладает высокоуровневой 
техникой для данных целей. Возникает вопрос: как организовать анализ микропластика и 
микроорганизмов пластисферы на нем в низкобюджетных условиях? Очевидно, что в этом 
случае надо задействовать возможности конструкторских бюро (где они еще остались на 
территории институтов), мастерских (где они еще остались на территории институтов) и 
центров коллективного пользования (где они еще остались на территории институтов). 
В качестве примера предлагается proposal, который позволял производить подобные работы 
еще до «вхождения в моду» тематик по исследованию пластисферы в 2010-е гг. в НИФХИ 
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(московская база которого была ликвидирована и утилизирована на рубеже 2010–2020-х гг., 
а некоторые здания уже снесены). 

Нами предлагалась для этого интеграция методов:  
1. Лазерного анализа микропластика и наннопланктона в жидкости в проточных 

кюветах, предназначавшихся изначально для океанографических экспедиций (данная 
техника была разработана в конце прошлого века Ю.В. Жулановым с соавторами), как это 
показано на Рисунке 1(а-е) (впоследствии предлагалась и почти дошла до имплементации её 
адаптация для цитометрии (Zhulanov et al., 2018)); 

2. Сканирующей электронной микроскопии с анализом микрочастиц пластика и 
биогенных структур (в том числе известкового наннопланктона) на микрозонде на базе 
JEOL JSM-35CF с анализатором микрочастиц с «бинаризатором», то есть дискриминатором 
видеосигнала по амплитуде для выделения контуров и определения геометрических границ 
частиц микропластика (см. Рисунок 2); при этом уже в начале 2019 года (то есть незадолго 
до закрытия московской базы НИФХИ) предлагалось использовать для оцифровки систему 
П.Л. Александрова (Alexandrov et al., 2025);  

3. Корреляционно-спектрального анализа изображений микрочастиц пластика и 
наннопланктона для различения первых от вторых, а также анализа текстуры поверхности 
микропластика методами корреляционно-спектрального анализа (это было впоследствии 
реализовано не на JEOL JSM-35CF и опубликовано в недавних статьях, аргументационная 
часть которых перекрывается с настоящей просветительской статьёй (Aleksandrov et al., 
2025; Gradov et al., 2024; Gradov et al., 2025)). 

 

 
 
Рис. 1а. Пример проточной кюветы макета лазерного счетчика-анализатора 
океанских гидрозолей (взвесей) конструкции Ю.В. Жуланова 
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Рис. 1б. Пример проточной кюветы макета лазерного счетчика-анализатора 
океанских гидрозолей (взвесей) конструкции Ю.В. Жуланова 
 

 
 
Рис. 1в. Пример проточной кюветы макета лазерного счетчика-анализатора океанских 
гидрозолей (взвесей) конструкции Ю.В. Жуланова.  
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Рис. 1г. Пример проточной кюветы макета лазерного счетчика-анализатора 
океанских гидрозолей (взвесей) конструкции Ю.В. Жуланова 
 

 
 
Рис. 1д. Пример проточной кюветы макета лазерного счетчика-анализатора океанских 
гидрозолей (взвесей) конструкции Ю.В. Жуланова 
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Рис. 1е. Пример проточной кюветы макета лазерного счетчика-анализатора океанских 
гидрозолей (взвесей) конструкции Ю.В. Жуланова 
 

 
 
Рис. 2а. Анализатор микрочастиц JEOL MICRO-PARTICLE ANALYZER с настраиваемыми 
уровнями аналогового видеосигнала (VIDEO LEVEL) и дискриминации (DISCRIMINATOR). 
Он выдает таблицу (кнопка TABL) распределения микрочастиц по размерам и гистограмму 
(кнопка HIST) распределения микрочастиц по размерам. Измерение запускается кнопкой 
MEAS. Изображение изначально (до предлагавшейся группой О.В. Градова оцифровки) идёт 
через BNC-разъём на видеомонитор SM10A 
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Рис. 2б. Колонна электронного микроскопа JEOL JSM-35CF и ввод светового микроскопа, 
который используется для позиционирования образца для рентгеноспектрального анализа 
на круге Роуланда. В версии модернизации, предлагавшейся группой Градова, указанный 
микроскоп становился основой для CLEM – корреляционной световой и электронной 
микроскопии (см. (Gradov, 2019; Gradov, 2023; Градов, 2023)). 

 

  
 
Рис. 2в                                                          Рис. 2г 

 
Рисунок 2в: Пульт управления JEOL. Желтая и белая кнопки – управление 

фокусировкой. В верхней части кадра видно посадочное гнездо для фотоаппарата, 

36 
 



European Geographical Studies. 2025. 12(1) 

адаптируемое также и для цифровых фотоаппаратов с перепрошивкой CDHK по технологии 
Александрова (Alexandrov et al., 2025). 

Рисунок 2г: Пульт управления JEOL. Генератор развертки/управление режимом 
сканирования (SCAN GENERATOR) и степени увеличения (модуль MAGNIFICATION). 
Управление детектора вторичных электронов (SEI – Secondary Electron Imaging)/детектора 
Эверхарта-Торнли (модуль SEI COLLECTION) для регистрации низкоэнергетических 
электронов (2–50 эВ). 

 
Обсуждение 
К сожалению, данные работы не удалось реализовать, в силу закрытия московской 

базы указанного института на рубеже 2010-х-2020-х гг. и утилизации оборудования. Однако 
общая идеология данных исследований не только остается актуальной по настоящее время 
(с учетом современных возрастающих технических возможностей науки), но и становится 
все более актуальной по мере увеличения загрязнения биосферы микропластиком. Большой 
вклад в эволюцию микробиоты в условиях изменения климата вносит термоиндуцируемый 
сдвиг активности ферментативных систем для биоразложения и колонизации пластика. 
В настоящее время мы можем полностью подтвердить прогноз по актуализации 
исследований в области микропластика (перекрывающей прирост публикаций по большой 
номенклатуре техногенных загрязнений, включая дымовые уносы), сделанный первым 
автором данного обзора в период недолгой работы в Лаборатории биологического 
воздействия наноструктур. Однако реализация данных исследований под силу только 
высокотехнологичным группам с наиболее современным оборудованием. Современные 
исследования экосистем пластисферы немыслимы без секвенирования метагеномов, масс-
спектрометрического MALDI имэджинга и дорогостоящих флуоресцентных методов со 
специализированными метками/зондами. На данный момент для РФ данные методы 
являются недоступными, в силу санкций. Поэтому в настоящее время мы можем 
констатировать неизбежность отставания российской экологии, геомикробиологии и 
биогеографии в области исследований пластисферы на годы вперёд. И множественные 
российские работы по микропластику последнего времени подтверждают в полной мере эти 
выводы, так как микробиологический акцент высокого уровня не удаётся (в одиночку, 
без привлечения зарубежных соавторов) поддерживать большинству групп.  
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Пластисфера как эволюционно новая геосферная оболочка и «биогеохимический 
реактор» техносферы (вводный методический обзор) 
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Аннотация. В настоящем кратком вводном обзоре мы даем базовые представления о 

биогеографии, геоэкологии / гидроэкологии и геохимической роли пластисферы и видового 
разнообразия микроорганизмов на ней. В последней части приводится ряд 
экспериментальных подходов и фотографий инструментов для его исследования. 
Техническая часть обзора основана на заделе семинара 2018 г. по методам анализа 
микропластика, готовившегося О.В. Градовым с соавторами для НИФХИ (однако без 
использования устаревших ссылок того периода). К сожалению, данные работы не удалось 
реализовать, в силу закрытия московской базы указанного института и утилизации 
оборудования. Однако общая идеология данных исследований не только остается 
актуальной по настоящее время (с учетом современных возрастающих технических 
возможностей науки), но и становится все более актуальной по мере увеличения 
загрязнения биосферы микропластиком и эволюции микробиоты в условиях изменения 
климата. Обзор в терминологически упрощенной версии рассчитан на широкий круг 
читателей, включая студентов и учащихся техникумов/колледжей.  

Ключевые слова: пластисфера, микропластик, техносфера, геомикробиология, 
геоэкология, гидроэкология, анализатор микрочастиц, микрозондовый анализ. 
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Geoinformation Technologies as a Tool for Managing Natural and Economic Systems 
in the Cryolithozone: from the First Maps to Digital Doubles 
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a Lomonosov Moscow State University, Russian Federation 

 
Abstract 
The development of the Russian cryolithozone, which occupies 65 % of the country's 

territory, has historically been a daunting task. Against the background of rapid climate change and 
intensive economic development of the Arctic, the traditional risks associated with the melting of 
permafrost have become systemic and widespread. This article argues that it is modern geographic 
information systems (GIS) that are becoming the central technological solution for a paradigm shift 
from disaster management to proactive strategic management. The author examines in detail the 
evolution of GIS: from basic mapping to the development of complex “digital twins” of the 
territory. These dynamic models, integrating monitoring, survey, and climate forecast data, make it 
possible to simulate permafrost degradation processes in high detail, assess risks to critical 
infrastructure, and justify optimal spatial development solutions. The key conclusion of the article 
emphasizes that in order to ensure the long-term sustainability of vulnerable northern regions, 
deep integration of GIS platforms with artificial intelligence technologies is necessary, which will 
open up opportunities for predictive analytics and adaptive planning. 

Keywords: cryolithozone, geographic information systems (GIS), management of natural 
and economic systems, digital mapping, permafrost degradation, spatial planning, sustainable 
development of the Arctic.  

 
1. Введение 
История освоения российских пространств к востоку от Урала – это история 

непрерывного диалога, а зачастую и сурового противостояния, с многолетнемёрзлыми 
породами. Ещё в XVIII–XIX веках первопроходцы и инженеры эмпирическим путём, ценой 
проб и ошибок, вырабатывали правила жизни в условиях вечной мерзлоты. Они заметили, 
что подпочвенный лёд «дышит» и двигается, что одни участки устойчивы, а другие 
проваливаются, и эти наблюдения ложились в основу первых примитивных карт и схем. 
Сегодня, когда на карту поставлены грандиозные национальные проекты – «Северный 
широтный ход», развитие Северного морского пути, освоение гигантских месторождений 
Арктики, – ставки неизмеримо возросли (Современные технологии..., 2025). 

Площадь российской криолитозоны составляет колоссальные 65 % от территории 
страны – это около 11 миллионов квадратных километров, пространство, сравнимое с целым 
континентом. Климатические изменения действуют на этот регион как катализатор: 
по данным научного сообщества, средняя годовая температура верхних горизонтов мёрзлых 
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пород в Западной Сибири за последние 30–40 лет повысилась на 1,5–2 °C, а в некоторых 
районах Якутии граница мёрзлых пород отступила к северу на десятки километров. 
Последствия этого процесса не абстрактны: просадки грунта приводят к деформациям 
зданий в Норильске, Якутске и Воркуте; таяние подземных льдов угрожает устойчивости 
магистральных нефте- и газопроводов; активизация термокарста меняет ландшафты, делая 
их непроходимыми для техники и нарушая традиционные пути коренных народов. В этих 
условиях наследие «дедовских методов» и разрозненные данные уже не спасают. Требуется 
системный, всевидящий и прогнозирующий инструмент (Цифровизация промышленности..., 
2024). Им становятся современные геоинформационные системы (ГИС), совершающие 
настоящую революцию в нашем восприятии и управлении криолитозоной. 

 
2. Материалы и методы 
Основу исследования составили комплексные методы сбора, интеграции и анализа 

пространственных данных, направленные на оценку состояния и прогноз развития 
природно-хозяйственных систем криолитозоны. Методологический подход был реализован 
в несколько последовательных этапов. 

2.1. Сбор и подготовка исходных данных. Для создания аналитической базы 
были использованы разнородные источники: 

– Геокриологические и инженерно-геологические данные: архивные материалы и 
результаты полевых обследований (данные термометрических скважин, параметры мерзлых 
пород, кадастр инженерно-геокриологических условий); 

– Картографические материалы: тематические карты разного масштаба и времени 
создания (карты распространения и характеристики многолетнемерзлых пород, 
ландшафтные, топографические карты); 

– Данные дистанционного зондирования Земли (ДЗЗ): многолетние ряды космических 
снимков среднего и высокого разрешения (Landsat, Sentinel-1/2), использованные для 
мониторинга динамики ландшафтов (термокарст, береговая абразия) и деформаций земной 
поверхности методом радарной интерферометрии (InSAR); 

– Данные о хозяйственной деятельности: цифровые слои расположения и 
характеристик объектов инфраструктуры (населенные пункты, линейные сооружения, 
промышленные объекты), материалы территориального планирования; 

– Климатические данные: реанализы (например, ERA5) и сценарии будущих 
изменений климата (модельные ряды CMIP6 для различных траекторий RCP/SSP). 

2.2. Геоинформационное моделирование и анализ. Все собранные данные 
были систематизированы и интегрированы в единую геоинформационную среду на 
платформе ArcGIS Pro/QGIS. Ключевые аналитические процедуры включали: 

– Пространственный анализ и наложение многослойных тематических покрытий для 
выявления корреляций и зонирования территории по степени риска; 

– Статистический анализ временных рядов данных (температура воздуха и пород, 
деформации) для выявления трендов; 

– Моделирование сценариев деградации мерзлоты с использованием упрощенных 
физико-математических моделей (например, на основе уравнения Стефана), инициируемых 
климатическими прогнозами; 

– Оценка уязвимости инфраструктуры на основе пространственного пересечения карт 
прогнозируемых геокриологических процессов с расположением объектов. 

2.3. Верификация моделей. Результаты моделирования и прогнозные карты 
рисков верифицировались путем сравнения с данными натурных наблюдений на реперных 
участках, а также с известными случаями аварийных ситуаций и деформаций (на примере 
объектов в Норильске, Воркуте, Якутске). Для анализа использовались как авторские 
полевые данные, так и материалы, представленные в научных публикациях и отчетах 
производственных организаций. 

 
3. Обсуждение 
Внедрение ГИС-технологий кардинально меняет парадигму управления. Мы наблюдаем 

переход от борьбы с последствиями к их интеллектуальному предупреждению (Zhdanov, 2022). 
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Для пространственного планирования. Выбор места под новый завод, порт или даже 
целый населённый пункт перестаёт быть лотереей. ГИС-анализ позволяет провести 
«ситовой отбор» территории, отбросив зоны с высокой льдистостью, активными 
криогенными процессами и низкой несущей способностью, и выделив наиболее стабильные 
и безопасные участки. Это позволяет сэкономить миллиарды рублей на будущих ремонтах и 
ликвидации аварий (Кузык и др., 2023). 

Для эксплуатации инфраструктуры. Создаются «цифровые паспорта» и «цифровые 
двойники» критических объектов – мостов, эстакад, трубопроводов. В такой двойник в 
режиме, близком к реальному времени, поступают данные мониторинга (например, 
о деформациях опор). Система не просто фиксирует изменения, но и, используя заложенные 
модели, может сигнализировать: «Устойчивость опоры №47 достигла 80 % от критического 
значения, рекомендовано провести укрепление в течение 6 месяцев». 

Для экономики и страхования. ГИС даёт возможность перевести риски из категории 
«форс-мажор» в категорию «просчитанная величина». Страховые компании могут 
использовать ГИС-карты рисков для точного калькулирования страховых премий для 
объектов в криолитозоне. Инвесторы получают инструмент для реалистичной оценки 
жизненного цикла проекта и потенциальных экологических издержек (Кобзев и др., 2022).  

 
4. Результаты 
Эволюцию методов можно проследить в трёх ключевых направлениях, где ГИС 

выступают центральным нервным узлом: 
1. От статичной карты к динамическому многослойному полотну. Первые карты 

распространения вечной мерзлоты, созданные ещё основоположником российского 
мерзлотоведения Михаилом Сумгиным, были гениальным, но статичным обобщением. 
Современная ГИС – это живой, «дышащий» организм (Цифровизация промышленности..., 
2023). Представьте себе виртуальную модель территории, на которую, как прозрачные 
кальки, нанесены десятки тематических слоёв: не только классическая топооснова, но и 
геокриологические данные (температура, мощность, льдистость), инженерно-геологические 
условия, расположение всей инфраструктуры, космические снимки разных лет, данные 
мониторинга деформаций и даже социально-экономические показатели. Возможность 
наложить слой распространения наледных процессов на карту автодорог или посмотреть, 
как менялась граница мёрзлых пород за 20 лет на фоне нового промышленного объекта,              
– это качественный скачок в аналитике. 

2. От ретроспективного анализа к прогнозному моделированию. Самый мощный 
козырь ГИС – не в том, чтобы показать, что уже произошло, а в том, чтобы смоделировать, 
что может произойти. Используя климатические прогнозы (например, по модели RCP 8.5), 
ГИС позволяет рассчитать, как будет повышаться температура мёрзлых пород в ближайшие 
50 лет, и, что критически важно, к каким последствиям это приведёт. Можно создать «карту 
рисков» просадки фундаментов для всего города, рассчитать вероятность образования 
нового термокарстового озера вблизи ключевого объекта инфраструктуры или 
спрогнозировать изменение несущей способности грунтов под взлётно-посадочной полосой. 
Яркий пример – история с Норильской ТЭЦ-3, где предварительный ГИС-анализ мог бы 
выявить риски протаивания под резервуаром и предотвратить масштабную аварию. 

3. От точечных измерений к сплошному космическому мониторингу. Гляциологи 
и мерзлотоведы десятилетиями проводили в полевых условиях, бури скважины и 
закладывая термометрические станции. Их труд бесценен, но он даёт информацию лишь 
в точках. Сегодня на помощь приходят технологии дистанционного зондирования Земли 
(ДЗЗ). Радарная интерферометрия (технология InSAR) со спутников позволяет с 
сантиметровой точностью отслеживать вертикальные смещения земной поверхности на 
площадях в тысячи квадратных километров. Данные со спутников серий Landsat и 
Sentinel позволяют наблюдать динамику береговой линии, зарастание озёр, смещение 
границ тундры и леса. Всё это «сырьё» поступает в ГИС, где обрабатывается, 
анализируется и превращается в готовые продукты для принятия решений (Топ-10 
трендов цифровизации, 2023). 
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5. Заключение 
Таким образом, геоинформационные системы – это уже не просто вспомогательный 

софт для картографов, а становой хребет новой философии управления северными и 
арктическими территориями. Они позволяют увидеть невидимое: скрытые под землёй 
линзы льда, медленные, но неумолимые движения грунта, будущие очаги разрушений 
(Поняева и др., 2024), Синтез ГИС с технологиями искусственного интеллекта для 
автоматического анализа снимков и Big Data для обработки гигантских массивов 
климатической информации открывает следующую ступень – создание «Цифрового 
двойника Российской криолитозоны». Это будет общедоступная платформа, где учёные, 
инженеры, градостроители и чиновники смогут совместно моделировать сценарии 
развития, минимизируя ущерб для хрупкой арктической природы и обеспечивая устойчивое 
и безопасное будущее для уникальных российских регионов, стоящих на ледяном 
фундаменте. Этот путь от наскальных рисунков первопроходцев к цифровым двойникам – 
наглядное свидетельство того, как знание и технологии позволяют человеку не покорять 
природу, а находить с ней разумный и устойчивый компромисс. 
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Аннотация. Освоение российской криолитозоны, занимающей 65 % территории страны, 

исторически было сложнейшей задачей. На фоне стремительного изменения климата и 
интенсивного хозяйственного освоения Арктики традиционные риски, связанные с таянием 
вечной мерзлоты, стали системными и масштабными. В данной статье утверждается, что 
именно современные геоинформационные системы (ГИС) становятся центральным 
технологическим решением для смены парадигмы – от ликвидации последствий к 
упреждающему стратегическому управлению. Автор детально рассматривает эволюцию ГИС: 
от базового картографирования до разработки комплексных «цифровых двойников» 
территории. Эти динамические модели, интегрирующие данные мониторинга, изысканий и 
климатических прогнозов, позволяют с высокой детализацией имитировать процессы 
деградации мерзлоты, проводить оценку рисков для критической инфраструктуры и 
обосновывать оптимальные решения по пространственному развитию. Ключевой вывод статьи 
подчеркивает, что для обеспечения долгосрочной устойчивости уязвимых северных регионов 
необходима глубокая интеграция платформ ГИС с технологиями искусственного интеллекта, 
что откроет возможности для предиктивной аналитики и адаптивного планирования. 

Ключевые слова: криолитозона, геоинформационные системы (ГИС), управление 
природно-хозяйственными системами, цифровое картографирование, деградация 
многолетнемерзлых пород, пространственное планирование, устойчивое развитие Арктики. 
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Time-Resolved Scanning Electron Microscopy for Sand Saltation Measurements 
 

Brief Conference Communication 
 

Oleg V. Gradov a , *, Irina A. Maklakova a, Andrei I. Sergeev a 
 
a Semenov Institute of Chemical Physics, RAS (ICP RAS), Moscow, Russian Federation 

 
Abstract 
The role of electrostatics in providing sand saltations is well known (including during the 

formation of dunes, as well as variations of sand flows in dust storms and sand clouds in 
aeolology). We propose to use time-resolved scanning electron microscopy for this purpose, since 
in the column of an electron microscope it is possible to program the potential difference/field 
strength by varying the accelerating voltage. Examples of time-resolved microimages for calibrated 
“sand models” are shown in this short paper. 

Keywords: sand saltations, sand electrostatics, dust storms, time-resolved SEM, sand 
clouds, aeolology. 

 
1. Введение 
Общеизвестна роль электростатики в обеспечении "сальтации" песка, в том числе при 

формировании дюн (модифицированный механизм Багнольда), а также вариациях 
песчаных потоков в пылевых бурях и песчаных облаках в эолологии (Schmidt et al., 1988; Yue 
et al., 2003, 2007; Zheng et al., 2006; Yue, Zheng, 2007). Несмотря на пересмотр некоторых 
механизмов сальтационных эффектов в последние годы, в особенности – недавно 
обнаруженную немонотонную зависимость порога текучести от диаметра частиц, 
приложенного электрического поля и поверхностной плотности заряда (приводящую к 
сепарации в течениях проводящих частиц от диэлектрических – за счёт снижения порога 
текучести за счёт электростатики для проводящих частиц до 31 % и повышения порога 
текучести до 76 % за счёт электростатики у отрицательно заряженных диэлектрических 
частиц) (Zhang, 2024), в целом, различные электростатические феномены воспроизводятся 
на песчинках в лабораторных условиях в элементарных установках типа описанной в (Xie et 
al., 2021). Две параллельные электродные пластины используются для создания 
однородного электрического поля, имитирующего атмосферное или эоловое электрическое 
поле. Под действием электрического поля частицы песка приобретают индуктивный заряд и 
поднимаются в воздух. Их траектории снимают скоростной камерой, на основе чего 
вычисляют суммарные заряды отдельных частиц песка, и их заряд на единицу массы. 
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Измеряется также пороговая напряженность электрического поля, приводящая к подъему 
частиц песка (она увеличивается с диаметром песчинки).  

В данном методе невозможно воздействовать на одиночную песчинку и наблюдать 
динамические феномены, сопутствующие сальтациям, в которых она участвует 
(электростатическая мультистабильность и обратимая агрегация, вращение частиц в 
вихревых полях и т. д.). 

 
2. Предлагаемый подход 
Нами предлагается использовать для этого времяразрешенную (и стробоскопическую) 

сканирующую электронную микроскопию, так как в колонне сканирующего электронного 
микроскопа возможно программировать разность потенциалов/напряженность поля через 
варьирование ускоряющего напряжения на катоде. Находящиеся на специализированной 
платформе с ограничивающими стенками либо в "субкамере" (если речь идёт об ASEM – 
атмосферной электронной микроскопии) песчинки будут испытывать воздействие 
электронного пучка и проявлять динамику строго в находящихся под электронным пучком/ 
облучаемых/сканируемых участках (ROI/region of interest). При этом можно отслеживать их 
динамику под пучком с временным разрешением, соответствующим техническим свойствам 
детекторов и системы развёртки. 

 
3. Материалы и методы 
Времяразрешенное исследование динамики песчинок с разным зарядом (в том числе 

модифицированных химически) и размерами/морфометрическими характеристиками было 
произведено впервые на собственноручно модифицированном сканирующем электронном 
микроскопе JEOL JSM T330-A в TV-режиме при подключении АЦП с модулем оцифровки 
видео к BNC-разъёму, выводящему на монитор (обычно при использовании TV-режима). 
При записи видеосигналов сальтационной динамики частиц песка с параметрами 
регистрации, отображаемыми на адресно-временном коде/тайм-коде, достигали 
разрешение от десятков миллисекунд до миллисекунд. Напряжение на катоде варьировали 
от единиц киловольт до 25 киловольт.  

 
4. Результаты 
Примеры времяразрешенных микроизображений для динамики калиброванных 

моделей песчинок с измеренными характеристиками заряда, пористости и морфометрии 
(SILASORB) приведены на Рисунке 1а. Можно видеть вращение одной частицы на 
поверхности другой – удерживающей первую электростатическими силами. Подтвердить 
факт вращения можно с применением двумерного преобразования Фурье в реальном 
времени (мы осуществляли это с использованием ПО QAVIS разработки ТОИ ДВО РАН): 
динамику изменений 2D FFT данной серии рапид-микрофотографий можно видеть на 
Рисунке 1б. В ряде случаев можно наблюдать прецессию частиц, а также явления, подобные 
гироскопическому движению песчинки в конфайнменте на поверхности. После отрыва от 
поверхности частицы уносятся вовне, иногда за пределы зоны сканирования. Ещё одним 
экстраординарным феноменом является дискретная динамика переключений при 
вращении частиц (частица "стопорится" в определенных угловых позициях), а также 
дискретные переходы в ориентациях песчинки между двумя состояниями 
("бистабильность") и более ("мультистабильность"). Также наблюдаются "перемещения 
частиц на дальние расстояния", предположительно, коррелирующие с размерами и зарядом 
поверхности песчинок. Они детектируются с использованием осциллографического метода 
на заданных строках.  

Примеры этих эффектов показаны на Рисунках 2а, 2б.  
Результаты модельных экспериментов опубликованы (Elfimov et al., 2025). Микрофото 

приведены из данной работы, а также исходной конференционной публикации. 
 
5. Обсуждение 
Эксперименты могут быть воспроизведены на любом песке при соблюдении 

электрофизических условий проведения эксперимента, а также могут лечь в основу 
классификации песков по их динамике. Созданные подходы могут иметь значение для 
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геологии также в целях: исследования механизмов извлечения отдельных минералов из 
песков электростатическим методом; анализа и моделирования электростатических 
эффектов в пылевых бурях и поведения частиц почв в ходе выветривания; поведения песка 
при формировании не только земных дюн, но и дюн Багнольда на Марсе и экзопланетах. 

 

  
а 

Рис. 1. Вращение модельной песчинки: а – серия микрофотографий; 
б – двумерные Фурье-спектры (2D FFT), снятые с ПО QAVIS 
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б 

Рис. 1. Вращение модельной песчинки: а – серия микрофотографий; 
б – двумерные Фурье-спектры (2D FFT), снятые с ПО QAVIS 
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а                                                                             б 
Рис. 2. Осциллограммы динамики модельной песчинки: а – ротация 
с промежуточными фазами; б – резкое перемещение в пространстве. 
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Времяразрешенная сканирующая электронная микроскопия для измерения 
и моделирования сальтационных процессов в песчаных бурях 
 
Краткое конференционное сообщение 
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Аннотация. Роль электростатики в обеспечении сальтационных процессов в песке 

хорошо известна (в том числе при формировании дюн, а также при изменении песчаных 
потоков в пылевых бурях). Мы предлагаем использовать для этой моделирования и 
измерения параметров этих процессов на уроне одиночных песчинок времяразрешающую 
сканирующую электронную микроскопию, поскольку в колонне электронного микроскопа 
возможно программировать разность потенциалов/напряженность поля путем изменения 
ускоряющего напряжения. В данном кратком сообщении представлены примеры 
времяразрешенных микроизображений для калиброванных по размеру и моментам 
инерции силикагелевых гранул – «модельных песчинок». 

Ключевые слова: сальтационные процессы в песке, электростатика песка, пылевые 
бури, времяразрешенная сканирующая электронная микроскопия (СЭМ), песчаные облака, 
эолология. 
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