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Abstract 
In this brief introductory review, we provide a basic understanding level/basic principles of 

the biogeography, geoecology/hydroecology, and geochemical role of the plastisphere and the 
species diversity of microorganisms in the plastisphere. The final section of the article presents a 
number of experimental approaches and photographs of the instruments used to study it. 
The technical part of this review is based on the groundwork of a 2018 workshop on microplastic 
analysis methods, prepared for demonstration at the Institute of Physical Chemistry/ 
Physicochemical Institute in Moscow (however, without using outdated references). Unfortunately, 
this work could not be implemented due to the closure of the Moscow base of this institute. 
However, the general philosophy of this research not only remains relevant today (given the 
increasing technical capabilities of modern science) but is also becoming increasingly relevant as 
microplastic pollution of the biosphere increases and the microbiota evolves in the face of climate 
change. In shortened and terminologically simplified version, this elementary review may be useful 
to readers, starting with junior students. 
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hydroecology, micro-particle analyzer, EPMA. 

 
1. Пластисфера как новая эволюционная геосферная оболочка 

планетарного масштаба. 
Общеизвестно, что пластисфера является очередной геосферной «оболочкой»  

планетарного масштаба, в которой на инертном плохо разлагаемом органическом веществе 
существуют микроорганизмы (биопленки (Di Pippo et al., 2022; Yu et al., 2023)) и целые 
экологические сообщества. Кючевым понятием в развитии пластисферы является 
микробиологическая колонизация поверхности пластика (“microbial colonization”, “bacterial 
colonization” (Agostini et al., 2021; Kelly et al., 2022; Stevenson et al., 2023; Zhai et al., 2023; Silva 
et al., 2023)). Разнообразие сообществ и взаимодействий на колонизированных 
поверхностях пластика и с окружающей средой позволяет говорить об экологии 
пластисферы (Amaral-Zettler et al., 2020; Nguyen et al., 2023). Стабильность по составу 
подложек – пластиков приводит к возможности проявления постоянства трендов эволюции 
микроорганизмов в данной среде, в силу чего для каждого типа сред нахождения 
соответствующего пластика формируется стабильная ниша (Yokoyama et al., 2023), в которой 
процессы эволюции микроорганизмов идут в одном направлении, закрепляя в отборе 
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комплексно формирующиеся особенности физиологии микроорганизмов, оптимальные для 
разложения данного пластика (Delacuvellerie et al., 2022; Chen et al., 2024). Вместе с тем, идёт 
дивергенция между специализированными для разных химически составов пластика  
линиями микроорганизмов.  

Одним из классических примеров эволюции в пластисфере является изменение и, как 
правило, усиление антибиотикорезистентности микроорганизмов пластисферы (Junaid et 
al., 2022). Отсюда понятно, что методы анализа и контроля/мониторинга данных сообществ 
относятся не к геномике отдельных видов, а к метагеномике всего сообщества и к 
метатранскриптомике пластисферы (Wu et al., 2022) (относительно применимости 
нанопоровых технологий секвенирования для метагеномов мы писали в (Maklakova et al., 
2021; Adamovich, Gradov, 2024)). Кроме того, они должны учитывать факторы среды, 
по отношению к которым идет отбор, в том числе абиотические и ксенобиотические, 
к которым относятся, если трактовать термин широко, перманентные токсикологические и 
фармакологические загрязнения (например – органические факторы эвтрофикации или 
постоянно аккумулируемые в биосфере антропогенные органические стоки (Lin et al., 2024)).  

 
2. Биоразнообразие и биогеографическое разнообразие пластисферы 
Следует отметить, что в состав пластисферы входят не только бактерии на пластике в 

почве или гидросфере (Luo et al., 2022). Нужно анализировать пластисферу как геосферную 
оболочку во всей полноте сообществ, межвидовых и межтаксонных взаимодействий 
(Amaral-Zettler et al., 2021; Žuna Pfeiffer et al., 2022).  

В составе пластисферы в гидросфере находят фитопланктон и зоопланктон (Cheng et 
al., 2021; Balkić et al., 2022). В последнее время всё громче звучат призывы учета диатомовых 
водорослей пластисферы и макроскопических беспозвоночных (Taurozzi et al., 2023). 
В состав почвенной пластисферы входят также обитатели ризосферы (Ran et al., 2024), 
не исключая (но и не ограничиваясь ими) клубеньковых бактерий-азотфиксаторов и 
простейших, обитающих на интерфейсе между пластиком и средой в межвидовых 
сообществах на поверхности мульчи (Luo et al., 2022; Wang et al., 2023; Li et al., 2024). Одни 
таксоны организмов могут считаться специфическими только для почвенной или только для 
водной пластисферы, а другие могут быть и водными, и наземными. Например, различные 
грибы и слизевики в пластисфере встречаются не только в почве, но и в речной и 
прибрежной зоне (Pietrelli et al., 2017; Xue et al., 2021). Очевидно, что вирусы и плазмиды, 
встречаясь у разных бактерий (не только бактериофаги), могут встречаться в пластисфере 
пресноводных, соленоводных, почвенных, эдафологических и других мест обитания (Li et 
al., 2022; Kutralam-Muniasamy et al., 2024) (почвенная пластисфера – «soil plastisphere» – 
с биогеографических позиций, представляет собой частный случай наземной пластисферы – 
«terrestrial plastisphere» (MacLean et al., 2021; Rillig et al., 2024)).  

В настоящее время часто выделяют следующие типы или биотопы  водных пластисфер 
(в силу различий, как биохимических, так и биогеохимических, между микробными 
сообществами пресноводных и морских экосистем (Wen et al., 2020; Dey et al., 2022)):  

– Пресноводная пластисфера (freshwater plastisphere) (Barros, Seena, 2021; Song et al., 
2023; Xu et al., 2024; Bocci et al., 2024), в том числе речная пластисфера (Zadjelovic et al., 
2023; Xu et al., 2023; Silva et al., 2024) и специфически выделяемая из-за антропогенного 
загрязнения речная пластисфера урбанизированных местностей (Zhu et al., 2023).  

– Пластисфера дождевой воды и воздействия дождевых вод на пластисферу рек, озер, 
морей и океанов, искусственных водохранилищ и т.д. (см., напр. (Wu et al., 2023)). 

– Морская пластисфера (Zettler et al., 2013; Du et al., 2022; Barbe et al., 2024; Lacerda et 
al., 2024) (в которой отдельно выделяют пластисферу мелководья (Tigreros-Benavides et al., 
2024), а в принципе можно было бы выделить также пластисферу пелагиали, пластисферу 
абиссали и т.д.). 

– Озёрная пластисфера и пластисфера озёрных отложений (Yang et al., 2023). 
– Пластисфера эстуариев (Forero-López et al., 2022; Sosa, Chen, 2022; Su et al., 2022; 

Sérvulo et al., 2023). 
– Пластисфера побережий и пляжей (Chaimusik et al., 2024). 
И т. д. 
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К гибридным дисперсным или soft mater carrier based «биотопам» пластисферы 
относят  

– Седиментологические формы пластисферы, в том числе на пластиковом дебрисе в 
пределах маршевых отложений (Rosato et al., 2022: Koh et al., 2023)). 

– Пластисферу техногенных и антропогенных муниципальных стоков и пластисферу 
свалок твердых бытовых отходов (Lin et al., 2023; Ye et al., 2024). 

– Пластисферу заболоченных местностей (эдафологическая пластиомика – 
недоизведанная отрасль, но в целом ряде заболоченных и антропогенно загрязненных 
местностей на территории Евразии она может найти себе применение). 

Как дорожную карту развития исследований в области пластисферы, различных по 
биогеографической локализации исследований можно использовать не более десятка 
современных пропозициональных работ (в качестве примера можно привести 
(Dąbrowska, 2021)). 

В действительности, определение биотопов пластисферы требует учета 
биогеографических условий, так как биотопы арктических морей неэквивалентны южным 
морским или средиземноморским биотопам, равно как и наземные биотопы пластисферы в 
области вечной мерзлоты и таликов отличаются от биотопов криозоны в области 
Антарктиды. Микробы, деградирующие пластик, в Арктике и в Альпах существенно 
отличаются (Rüthi et al., 2023). Морские биотопы пластисферы зависят от солености воды и 
нередко бывают в большей степени похожи на пресноводные биотопы. В то же время в 
некоторых солевых озерах галофильные виды делают формирующиеся микробные сообщества 
похожими на морские. Известно явление зависимости биодеградируемости микропластика от 
местоположения на линии «пресные воды – морские воды» (Zhou et al., 2023). 

В то же время, известно влияние климата на формирование биотопов пластисферы. 
Глобальное потепление климата как тренд, несомненно, влияет на изменение видового 
состава биопленок и биотопов пластисферы, а также на состав выделяемых при 
биоразложении пластика в соответствующих условиях летучих и нелетучих продуктов (Ji et 
al., 2022). Однако и одиночные климатические события (ураганы, снежные заносы, 
экстремальная жара, наводнения) рассматривают как наемаловажный фактор для эволюции 
пластисферы (Karkanorachaki et al., 2023). Примером таковых событий, имеющих чётко 
прослеживаемые механизмы воздействия на микробиоту пластисферы, может быть 
активируемое турбулентностью тайфуна перераспределение микропластика, приводящее к 
реформированию микробных сообществ пластисферы (Chen et al., 2021). В рамках теории 
катастроф можно обобщить этот результат на многие и разноплановые по происхождению 
факторы, в результате которых или после которых микробное сообщество проходит точку 
бифуркации и качественно изменяет свой метаболический и микроэкологический профиль. 

 
3. Геохимическая и аэрохимическая активность пластисферы 
Геохимическая и аэрохимическая активность пластисферы включает в себя азотный 

метаболизм микробов и биогеохимические циклы азота (Huang et al., 2024), фосфора (Song 
et al., 2024), углерода (Kirstein et al., 2019; Cornejo-D'Ottone et al., 2020; Shan et al., 2023)), 
а также биоаккумуляцию металлов в пластисфере (Tarchi et al., 2023; Lenoble et al., 2024). 
В силу наличия активности в области микрочастиц металлов, включая железо, логично 
говорить о возможности протекания фото-фентон-процессов на поверхности микропластика 
и иных элементов пластисферы при открытом их экспонировании, в том числе в океане 
(Lu et al., 2024). Точнее геохимическая активность пластисферы может быть рассмотрена 
через призму активности ионных каналов (Gradov, 2016a; Александров, Градов, 2017; 
Gradov, 2018) или анализ расширенного фенотипа микроорганизмов соответствующих 
местообитаний (Gradov, 2016b).  

 
4. Константна ли граница биодеградируемых и небиодеградируемых 

пластиков в пластисфере? 
Известны биопленки и другие проявления пластисферы на таких широко 

распространенных пластиках (как продуктах нефтехимического синтеза (Pang et al., 2023), так и 
биопластиках, сгенерированных микроорганизмами, таких как полигидроксибутират), как: 
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– полиэтилен (Delacuvellerie et al., 2019; Joshi et al., 2022; Wang et al., 2023; Zhang et al., 
2023); 

– полипропилен (Sun et al., 2023); 
– полиэтилентерефталат (Wright et al., 2021); 
– полистирол (Poeta et al., 2017); 
– полиуретан (Park et al., 2023); 
– полибутилен сукцинат и сукцинат-ко-адипат полибутилена (Kimura et al., 2023; 

Tanunchai et al., 2023); 
– полигидроксиалканоаты, в частности – полигидроксибутират (Vannini et al., 2021); 
– полибутиленадипаттерефталат и его бленды с полилактидом (Chen et al., 2023); 
– нейлон (Collins et al., 2023). 
Можно видеть, что речь идёт как о биодеградируемых полимерах, так и об обычных 

пластиках (Jacquin et al., 2019; Behera, Das, 2023). 
Впрочем в данном случае вопрос принадлежности пластиков пластисферы следует 

относить к числу нерешенных. И каждое новое сообщение о нахождении новых ферментов, 
способствующих биодеградации пластика в пластисфере (Frey et al., 2024), дальше сдвигает 
границу этой неопределенности или расширенной трактовки (особо, если исходить 
впоследствии из метагеномики, позволяющей понять потенциал биоразложения 
конкретных многовидовых сообществ, сложившихся в конкретных условиях (Saleem et al., 
2023)). Сдвигает границы между неразлагаемыми и биоразлагаемыми материалами в 
пластисфере также и пластиомика ("plastiomics") – наука о пластиоме ("plastiome" = 
plastisphere-enriched mobile resistome (Guruge et al., 2024)); одна из новых мультиомиксных 
наук, приводящих в перспективе к полному анализу микробного разнообразия пластисферы 
и мультиомиксной характеризации биодеградации и связанной с ней сукцессии в 
многовидовых сообществах (Wright et al., 2021a; Tiwari et al., 2022). Как известно, в пластики 
часто закладывают компоненты, резистентные по отношению к биоразложению или 
антимикробные по сути. В результате же эволюции, упомянутой в начале статьи, происходит 
отбор микроорганизмов пластисферы по критерию резистентности к данным факторам 
(Stevenson et al., 2024) и выработка совокупности генов резистентности к данным добавкам 
– (т.н. "resistome"). Поэтому в настоящее время адаптация микроорганизмов к 
распространению в пластисфере обычно также рассматривается как путь к появлению в 
окружающей среде резистентных штаммов (Zagui et al., 2022). В частности, из этого следует, 
что следующие поколения и новые штаммы микроорганизмов будут разлагать резистентные 
к более ранним формам и габитусам (как коррелятам экониш и изменяющихся условий 
среды (Xie et al., 2023)) тех же микроорганизмов материалы! Таксономические границы 
биоразложения будут стремительно меняться с эволюцией пластисферы, отдельных 
штаммов и видов микроорганизмов и микробных сообществ в ней. 

 
5. Пластисфера почв 
Теперь перейдём к почве и действию микрофлоры из почвенной пластисферы на 

биоразложение пластиков в ней. Мы не будем ограничиваться бактериями – так как в 
биоразложении принимают существенное участие и почвенные грибы. В наших ранних 
работах с использованием лабораторий на чипе или оптофлюидных сенсоров с полимерным 
покрытием, погружаемым в почву, мы установили, что в ходе биоразложения качество 
изображения на погружном сенсоре меняется, в силу разложения полимера или 
воздействия микроорганизмов и среды на полимер. Позже мы пытались подойти к задаче 
исследования этого эффекта с позиций масс-спектрометрического (для обеспечения "omics 
approach") или иного локализованного химического анализа (Jablokov et al., 2017; Jablokov et 
al., 2018; Orekhov, Gradov, 2022; Orekhov, Gradov, 2023), однако же нами была допущена 
ошибка в конструкции чипа – оказалось, что полимер в гибридных чипах ионизируется под 
лазерным пучком и искажает результаты эксперимента. Поэтому необходимо создание 
чипов, которые в своей конструкции не содержат никаких иных полимеров (ни в форме 
адгезивов, ни в форме гереметиков, ни в форме красящих или защитных покрытий), если 
мы хотим точно исследовать именно биодеградацию либо почвенно-геохимическую 
деградацию конкретных полимеров в почвенной пластисфере. 
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Пластисфера почв, вероятно, является наиболее изученной частью глобальной 
пластисферы (Rillig et al., 2024). Для неё найдены оптимальные методы исследования, 
выявлены воздействия различных факторов и экологических условий, реализована полная 
или почти полная биогеохимическая расшифровка механизмов организующих и 
обеспечивающих функциональность микробиоты пластисферы в почве, исследованы 
видовые роли и распреденения различных по функциональности организмов-деструкторов на 
интерфейсах абиогенного и биокосного вещества (rare and abundant microorganisms between 
plastisphere and soils) (Sun et al., 2022; Wanget al., 2022). Изучены редокс-процессы и эффекты 
рН и Eh on shaping plastisphere bacterial communities in soil, в том числе в зависимости от 
содержания микроэлементов и химических контаминантов в почве (Li et al., 2021). 

В случае почвенной пластисферы исследованы множественные эффекты действия 
тяжелых металлов и дезинфектантов на антибиотикорезистентность почвенных 
микроорганизмов и сообществ пластисферы (Xiang et al., 2022; Ni et al., 2024). Они 
исследованы не только для микроорганизмов, но и для мезофауны почвы. В связи с этим, 
данные эффекты могут считаться наиболее предсказуемыми, по отношению к 
биогеохимическим эффектам для экзотических биотопов, а почва может считаться 
естественной лабораторией или биополигоном для отработки навыков работы с 
экологическими, биогеохимическими и материаловедческими (биодеградация) аспектами 
пластисферы (если не принимать во внимание размывающие смысл концептуальные 
обобщения уровня "continental-scale microcosm" (Sun et al., 2024)).  

В конкретных случаях, имеющих практическое значение, в почве разлагаются вполне 
конкретные полимеры или композиты известного происхождения – от техногенного 
(т. е., по умолчанию, исходно не содержащего патогенной микрофлоры) до антропогенного 
генеза (например, накопившиеся за время пандемии COVID в почве маски и респираторы, 
потенциально содержащие бактерии из выдоха человека (Li et al., 2023; Cheng et al., 2024; 
Gradov, 2025), а также специальные фильтры инфекционных медучреждений). Пористые и 
волокнистые, в том числе нетканые материалы являются в этом аспекте сборщиками для 
микробиома почвенной пластисферы (Rohrbach et al., 2023), но их эффективность сильно 
зависит от свойств материала, включая измеримую пористость (Grigorieva et al., 2021; 
Grigorieva et al., 2022; Grigorieva et al., 2023; Grigorieva et al., 2025; Maklakova et al., 2021), так 
как размеры пор должны соответствовать размерам микроорганизмов и быть не меньше их.  

Нередко в почве после мульчирования находятся небиодеградируемые фрагменты 
микроспластика (Li et al., 2024). В некоторых случаях даже потенциально биоразлагаемые 
компоненты не смогут быть разложены, в силу несоответствия размерам возможной 
колониеобразующей единицы размеров остающегося стабильного островка полимера или 
композита (Zhao et al., 2023). В некоторых случаях в почве могут обнаружиться (или быть в 
нее специально заложенными в ходе удобрения почв) также фрагменты, способные к 
постепенному высвобождению определенных химических агентов (Tian et al., 2024). 

 
6. Важность имэджинговых и мэппинговых исследований и методов 

микроскопии для характеризации объектов пластисферы 
Из вышеизложенного следует, что характеризацию объектов пластисферы следует 

производить дискретно и с геодезической привязкой в биолого-географическом аспекте и с 
пространственно-временной метрикой в ходе исследования климатических и 
метеорологических влияний на пластисферу. Более того, из вышеизложенных 
теоретических и библиографических предпосылок следует необходимость внедрения 
микроскопических или, корректнее, микроаналитических методов высокого разрешения 
(включая MALDI imaging или конфокальную рамановскую микроскопию) в исследования 
пластисферы и продуктов её биологической и/или экологической активности. 

Действительно, ещё  пять лет назад в классической статье задан вопрос: «Кто есть где в 
пластисфере?» («Who is where in the Plastisphere?») (Arias-Andres et al., 2020). Ответить на 
него без высокоразрешающих (или же позиционно-чувствительных) биогеографических и 
химико-экологических карт (беспрецедентного для других биотопов разрешения – из-за 
малости объектов исследования и их локализации, например - на частицах микропластика) 
не представлялось бы возможным. 
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Если говорить о микропластике и иных объектах пластисферы, то нужно также понять 
когда он выступает как ресурс для роста (то есть биодеградируется), а когда выступает 
только лишь как подложка, на которой растут микроорганизмы, питаясь совсем другими 
ресурсами окружающей среды (вопрос «Пищевой ресурс или только бесплатное средство 
для путешествий» – "Food or just a free ride?" – актуальный как для одиночных частиц либо 
фрагментированных пленок пластика, так и для пластисферы в целом (Wright et al., 2021b)).  

Известное явление пространственного перекрывания областей жизни или ареалов 
основных и случайных таксонов в пластисфере также затрудняет возможность точной 
позиционно-чувствительной идентификации функций/биохимических ролей 
микроорганизмов в микробном сообществе и многослойных пленках пластисферы (Zhang et 
al., 2022). Происходящая в пространстве-времени сукцессия видов в многовидовом 
микробном сообществе, сообразно изменяющимся условиям среды (климатическим или 
субстратным, в том числе по мере трансформации при биоразложении многослойных или 
многокомпонентных композитов, в том числе - фрагментов ламинатов и армированных 
небиодеградируемыми компонентами биопластиков), требует пространственно-временного 
и кепстрального анализа микробных сообществ пластисферы и их потенциала для 
биодеградации пластиков (Miao et al., 2023). В последнем случае в популяциях или 
микробных сообществах могут происходить как дивергентные процессы, так и процессы 
конвергенции в процессе сукцессии и перекрывания областей существования/ 
микроареалов (Wu et al., 2024; Zhang et al., 2024).  

По этой причине в последнее время много авторов выступают за картирование и 
иэджинг микроскопических микробных сообществ на пластике, в частности на морском 
пластике для установления пространственной структуры пластисферы (Schlundt et al., 2020).  

 
7. Низкобюджетные методы.  
По аналогии с анализом вклада геоморфологии и ландшафта в эволюцию на 

макроскопическом уровне, в случае микробных сообществ представляется возможным 
анализ вклада геометрии поверхности/микрорельефа/микрошероховатости и/или 
наношероховатости микропластика на эволюцию микробных сообществ (Dąbrowska et al., 
2021). Многие авторы (как правило, с лучшим техническим оснащением лабораторий) 
говорят не только об имиджинге образцов пластисферы, но и о микроанализе, вплоть до 
локального стабильно-изотопного анализа and nanoSIMS single-cell imaging для определения 
колонизаторов пластисферы, по крайней мере, в почвенных условиях (Xiang et al., 2024).  

Большим, как правило, коллаборативным (то есть "межведомственным") коллективам 
автором доступны не только исследования одиночных образцов на микроуровне, но и 
создание баз данных, соотносящих подобные исследования микрообразцов с 
географическими картами их локализации и метагеномными репрезентациями эволюции 
микробных сообществ. Высшим пилотажем считается анализ воздействия микробных 
сообществ с пластисферы на результаты поглощения микропластика другими видами 
живых организмов, различающихся по динамической локализации и картам миграций, 
биогеографическим и трофическим характеристикам. Как пример последнего подхода 
можно предложить новейшую работу по вкладу микропластика и ассоциированной с ним 
микробиоты плаcтисферы на физиологические и биохимические характеристики, а также 
паттерны экспрессии генов фильтрующих морскую воду ланцетников (Cheng et al., 2023). 
Очевидно, что подобные работы возможны также и для всех организмов-фильтраторов. 
Со временем таких работ, очевидно, будет появляться всё больше и больше. Но утверждение 
это верно только для лабораторий, имеющих достаточно современное оснащение.  

Большинство российских и постсоветских лабораторий не обладает высокоуровневой 
техникой для данных целей. Возникает вопрос: как организовать анализ микропластика и 
микроорганизмов пластисферы на нем в низкобюджетных условиях? Очевидно, что в этом 
случае надо задействовать возможности конструкторских бюро (где они еще остались на 
территории институтов), мастерских (где они еще остались на территории институтов) и 
центров коллективного пользования (где они еще остались на территории институтов). 
В качестве примера предлагается proposal, который позволял производить подобные работы 
еще до «вхождения в моду» тематик по исследованию пластисферы в 2010-е гг. в НИФХИ 
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(московская база которого была ликвидирована и утилизирована на рубеже 2010–2020-х гг., 
а некоторые здания уже снесены). 

Нами предлагалась для этого интеграция методов:  
1. Лазерного анализа микропластика и наннопланктона в жидкости в проточных 

кюветах, предназначавшихся изначально для океанографических экспедиций (данная 
техника была разработана в конце прошлого века Ю.В. Жулановым с соавторами), как это 
показано на Рисунке 1(а-е) (впоследствии предлагалась и почти дошла до имплементации её 
адаптация для цитометрии (Zhulanov et al., 2018)); 

2. Сканирующей электронной микроскопии с анализом микрочастиц пластика и 
биогенных структур (в том числе известкового наннопланктона) на микрозонде на базе 
JEOL JSM-35CF с анализатором микрочастиц с «бинаризатором», то есть дискриминатором 
видеосигнала по амплитуде для выделения контуров и определения геометрических границ 
частиц микропластика (см. Рисунок 2); при этом уже в начале 2019 года (то есть незадолго 
до закрытия московской базы НИФХИ) предлагалось использовать для оцифровки систему 
П.Л. Александрова (Alexandrov et al., 2025);  

3. Корреляционно-спектрального анализа изображений микрочастиц пластика и 
наннопланктона для различения первых от вторых, а также анализа текстуры поверхности 
микропластика методами корреляционно-спектрального анализа (это было впоследствии 
реализовано не на JEOL JSM-35CF и опубликовано в недавних статьях, аргументационная 
часть которых перекрывается с настоящей просветительской статьёй (Aleksandrov et al., 
2025; Gradov et al., 2024; Gradov et al., 2025)). 

 

 
 
Рис. 1а. Пример проточной кюветы макета лазерного счетчика-анализатора 
океанских гидрозолей (взвесей) конструкции Ю.В. Жуланова 
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Рис. 1б. Пример проточной кюветы макета лазерного счетчика-анализатора 
океанских гидрозолей (взвесей) конструкции Ю.В. Жуланова 
 

 
 
Рис. 1в. Пример проточной кюветы макета лазерного счетчика-анализатора океанских 
гидрозолей (взвесей) конструкции Ю.В. Жуланова.  
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Рис. 1г. Пример проточной кюветы макета лазерного счетчика-анализатора 
океанских гидрозолей (взвесей) конструкции Ю.В. Жуланова 
 

 
 
Рис. 1д. Пример проточной кюветы макета лазерного счетчика-анализатора океанских 
гидрозолей (взвесей) конструкции Ю.В. Жуланова 
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Рис. 1е. Пример проточной кюветы макета лазерного счетчика-анализатора океанских 
гидрозолей (взвесей) конструкции Ю.В. Жуланова 
 

 
 
Рис. 2а. Анализатор микрочастиц JEOL MICRO-PARTICLE ANALYZER с настраиваемыми 
уровнями аналогового видеосигнала (VIDEO LEVEL) и дискриминации (DISCRIMINATOR). 
Он выдает таблицу (кнопка TABL) распределения микрочастиц по размерам и гистограмму 
(кнопка HIST) распределения микрочастиц по размерам. Измерение запускается кнопкой 
MEAS. Изображение изначально (до предлагавшейся группой О.В. Градова оцифровки) идёт 
через BNC-разъём на видеомонитор SM10A 
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Рис. 2б. Колонна электронного микроскопа JEOL JSM-35CF и ввод светового микроскопа, 
который используется для позиционирования образца для рентгеноспектрального анализа 
на круге Роуланда. В версии модернизации, предлагавшейся группой Градова, указанный 
микроскоп становился основой для CLEM – корреляционной световой и электронной 
микроскопии (см. (Gradov, 2019; Gradov, 2023; Градов, 2023)). 

 

  
 
Рис. 2в                                                          Рис. 2г 

 
Рисунок 2в: Пульт управления JEOL. Желтая и белая кнопки – управление 

фокусировкой. В верхней части кадра видно посадочное гнездо для фотоаппарата, 
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адаптируемое также и для цифровых фотоаппаратов с перепрошивкой CDHK по технологии 
Александрова (Alexandrov et al., 2025). 

Рисунок 2г: Пульт управления JEOL. Генератор развертки/управление режимом 
сканирования (SCAN GENERATOR) и степени увеличения (модуль MAGNIFICATION). 
Управление детектора вторичных электронов (SEI – Secondary Electron Imaging)/детектора 
Эверхарта-Торнли (модуль SEI COLLECTION) для регистрации низкоэнергетических 
электронов (2–50 эВ). 

 
Обсуждение 
К сожалению, данные работы не удалось реализовать, в силу закрытия московской 

базы указанного института на рубеже 2010-х-2020-х гг. и утилизации оборудования. Однако 
общая идеология данных исследований не только остается актуальной по настоящее время 
(с учетом современных возрастающих технических возможностей науки), но и становится 
все более актуальной по мере увеличения загрязнения биосферы микропластиком. Большой 
вклад в эволюцию микробиоты в условиях изменения климата вносит термоиндуцируемый 
сдвиг активности ферментативных систем для биоразложения и колонизации пластика. 
В настоящее время мы можем полностью подтвердить прогноз по актуализации 
исследований в области микропластика (перекрывающей прирост публикаций по большой 
номенклатуре техногенных загрязнений, включая дымовые уносы), сделанный первым 
автором данного обзора в период недолгой работы в Лаборатории биологического 
воздействия наноструктур. Однако реализация данных исследований под силу только 
высокотехнологичным группам с наиболее современным оборудованием. Современные 
исследования экосистем пластисферы немыслимы без секвенирования метагеномов, масс-
спектрометрического MALDI имэджинга и дорогостоящих флуоресцентных методов со 
специализированными метками/зондами. На данный момент для РФ данные методы 
являются недоступными, в силу санкций. Поэтому в настоящее время мы можем 
констатировать неизбежность отставания российской экологии, геомикробиологии и 
биогеографии в области исследований пластисферы на годы вперёд. И множественные 
российские работы по микропластику последнего времени подтверждают в полной мере эти 
выводы, так как микробиологический акцент высокого уровня не удаётся (в одиночку, 
без привлечения зарубежных соавторов) поддерживать большинству групп.  
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Пластисфера как эволюционно новая геосферная оболочка и «биогеохимический 
реактор» техносферы (вводный методический обзор) 

 
Олег Валерьевич Градов a , *, Юрий Васильевич Жуланов b, Павел Юрьевич Макавеев b, 
Михаил Константинович Филиппов a 
 
a Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской 
академии наук, Москва, Российская Федерация 
b Научно-исследовательский физико-химический институт имени Л. Я. Карпова (НИФХИ), 
Москва, Российская Федерация 

 
Аннотация. В настоящем кратком вводном обзоре мы даем базовые представления о 

биогеографии, геоэкологии / гидроэкологии и геохимической роли пластисферы и видового 
разнообразия микроорганизмов на ней. В последней части приводится ряд 
экспериментальных подходов и фотографий инструментов для его исследования. 
Техническая часть обзора основана на заделе семинара 2018 г. по методам анализа 
микропластика, готовившегося О.В. Градовым с соавторами для НИФХИ (однако без 
использования устаревших ссылок того периода). К сожалению, данные работы не удалось 
реализовать, в силу закрытия московской базы указанного института и утилизации 
оборудования. Однако общая идеология данных исследований не только остается 
актуальной по настоящее время (с учетом современных возрастающих технических 
возможностей науки), но и становится все более актуальной по мере увеличения 
загрязнения биосферы микропластиком и эволюции микробиоты в условиях изменения 
климата. Обзор в терминологически упрощенной версии рассчитан на широкий круг 
читателей, включая студентов и учащихся техникумов/колледжей.  

Ключевые слова: пластисфера, микропластик, техносфера, геомикробиология, 
геоэкология, гидроэкология, анализатор микрочастиц, микрозондовый анализ. 
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